Insights on phase formation from thermodynamic calculations and machine learning of 2436 experimentally measured high entropy alloys

被引:17
|
作者
Wang, Chuangye [1 ]
Zhong, Wei [1 ]
Zhao, Ji-Cheng [1 ]
机构
[1] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA
基金
美国国家科学基金会;
关键词
High entropy alloys; CALPHAD; High-throughput calculations; Phase selection rules; Machine learning; ATOMIC SIZE DIFFERENCE; SOLID-SOLUTION PHASE; SUPERCOOLED LIQUID; STABILITY; DESIGN; MICROSTRUCTURE; PREDICTION; SELECTION; CLASSIFICATION; OPTIMIZATION;
D O I
10.1016/j.jallcom.2022.165173
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Both CALPHAD (CALculation of PHAse Diagrams) and machine learning (ML) approaches were employed to analyze the phase formation in 2436 experimentally measured high entropy alloy (HEA) compositions consisting of various quinary mixtures of Al, Co, Cr, Cu, Fe, Mn, and Ni. CALPHAD was found to have good capabilities in predicting the BCC/B2 and FCC phase formation for the 1761 solid-solution-only compositions, excluding HEAs containing an amorphous phase (AM) or/and intermetallic compound (IM). Phase selection rules were examined systematically using several parameters and it was revealed that valence electron concentration (VEC) < 6.87 and VEC > 9.16 are the conditions for the formation of single-phase BCC/B2 and FCC, respectively; and CALPHAD could predict this with essentially 100% accuracy. Both CALPHAD predictions and experimental observations show that more BCC/B2 alloys are formed over FCC alloys as the atomic size difference between the elements increases. Four ML algorithms, decision tree (DT), k-nearest neighbor (KNN), support vector machine (SVM), and artificial neural network (ANN), were employed to study the phase selection rules for two different datasets, one consisting of 1761 solid-solution (SS) HEAs without AM and/or IM phases, and the other set consisting of all the 2436 HEA compositions. Cross validation (CV) was performed to optimize the ML models and the CV accuracies are found to be 90.4%, 94.1%, 93.8%, 89.7% for DT, KNN, SVM, and ANN respectively in predicting the formation of BCC/B2, BCC/B2 + FCC, and FCC; and 92.9%, 96.3%, 96.9%, 92.3% for DT, KNN, SVM, and ANN respectively in predicting SS, AM, SS + AM, and IM phases. Sixty-six experimental bulk alloys with SS structures are predicted with the trained ANN model, and the accuracy reaches 80.3%. VEC was found to be most important parameter in phase prediction for BCC/B2, BCC/B2 + FCC, and FCC phases. Electronegativity difference and FCC-BCC-index (FBI) are the two dominating features in determining the formation of SS, AM, SS + AM, and IM. A separation line delta H-mix = 29 x VEC - 247 was found in the delta H-mix-vs-VEC plot to predict the formation of single-phase BCC/B2 or FCC with a 96.2% accuracy (delta H-mix = mixing enthalpy). These insights will be very valuable for designing HEAs with targeted crystal structures. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Machine learning and visualization assisted solid solution strengthening phase prediction of high entropy alloys
    Gao, Sida
    Gao, Zhiyu
    Zhao, Fei
    MATERIALS TODAY COMMUNICATIONS, 2023, 35
  • [32] Machine learning-based inverse design for single-phase high entropy alloys
    Zeng, Yingzhi
    Man, Mengren
    Ng, Chee Koon
    Wuu, Delvin
    Lee, Jing Jun
    Wei, Fengxia
    Wang, Pei
    Bai, Kewu
    Cheh Tan, Dennis Cheng
    Zhang, Yong-Wei
    APL MATERIALS, 2022, 10 (10)
  • [33] Descriptors for phase prediction of high entropy alloys using interpretable machine learning
    Zhao, Shang
    Yuan, Ruihao
    Liao, Weijie
    Zhao, Yatong
    Wang, Jun
    Li, Jinshan
    Lookman, Turab
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (05) : 2807 - 2819
  • [34] An understanding of high entropy alloys from phase diagram calculations
    Zhang, F.
    Zhang, C.
    Chen, S. L.
    Zhu, J.
    Cao, W. S.
    Kattner, U. R.
    CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY, 2014, 45 : 1 - 10
  • [35] Accelerated design of low-activation high entropy alloys with desired phase and property by machine learning
    Li, Xiaochen
    Zheng, Mingjie
    Li, Chang
    Pan, Hao
    Ding, Wenyi
    Yu, Jie
    APPLIED MATERIALS TODAY, 2024, 36
  • [36] Phase prediction of high-entropy alloys based on machine learning and an improved information fusion approach
    Chen, Cun
    Han, Xiaoli
    Zhang, Yong
    Liaw, Peter K.
    Ren, Jingli
    COMPUTATIONAL MATERIALS SCIENCE, 2024, 239
  • [37] Machine learning prediction of hardness in solid solution high entropy alloys
    Gao, Zhiyu
    Zhao, Fei
    Gao, Sida
    Xia, Tian
    MATERIALS TODAY COMMUNICATIONS, 2023, 37
  • [38] Machine learning approach to predict new multiphase high entropy alloys
    Krishna, Yegi Vamsi
    Jaiswal, Ujjawal Kumar
    Rahul, M. R.
    SCRIPTA MATERIALIA, 2021, 197
  • [39] Machine learning for high-entropy alloys: Progress, challenges and opportunities
    Liu, Xianglin
    Zhang, Jiaxin
    Pei, Zongrui
    PROGRESS IN MATERIALS SCIENCE, 2023, 131
  • [40] Explaining of prediction accuracy on phase selection of amorphous alloys and high entropy alloys using support vector machines in machine learning
    Zhang, Wei
    Li, Peiyou
    Wang, Lin
    Wan, Fangyi
    Wu, Junxia
    Yong, Longquan
    MATERIALS TODAY COMMUNICATIONS, 2023, 35