LONG TIME ACCURACY OF LIE-TROTTER SPLITTING METHODS FOR LANGEVIN DYNAMICS

被引:40
作者
Abdulle, Assyr [1 ]
Vilmart, Gilles [2 ,3 ]
Zygalakis, Konstantinos C. [4 ]
机构
[1] Ecole Polytech Fed Lausanne, Math Sect, CH-1015 Lausanne, Switzerland
[2] Univ Geneva, Sect Math, CH-1211 Geneva 4, Switzerland
[3] Ecole Normale Super Rennes, INRIA Rennes, IRMAR, CNRS, F-35170 Bruz, France
[4] Univ Southampton, Math Sci, Southampton SO17 1BJ, Hants, England
基金
瑞士国家科学基金会;
关键词
stochastic differential equations; splitting method; Langevin dynamics; weak convergence; modified differential equations; backward error analysis; invariant measure; ergodicity; NUMERICAL-METHODS; INTEGRATORS; APPROXIMATION; ERGODICITY; EQUATIONS; ERROR; SDES;
D O I
10.1137/140962644
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new characterization of sufficient conditions for the Lie-Trotter splitting to capture the numerical invariant measure of nonlinear ergodic Langevin dynamics up to an arbitrary order is discussed. Our characterization relies on backward error analysis and needs weaker assumptions than assumed so far in the literature. In particular, neither high weak order of the splitting scheme nor symplecticity are necessary to achieve high order approximation of the invariant measure of the Langevin dynamics. Numerical experiments confirm our theoretical findings.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 34 条
[1]  
Abdulle A., 2015, LECT NOTES COMPUT SC, V103, P537, DOI DOI 10.1007/978-3-319-10705-9_53
[2]   HIGH ORDER NUMERICAL APPROXIMATION OF THE INVARIANT MEASURE OF ERGODIC SDES [J].
Abdulle, Assyr ;
Vilmart, Gilles ;
Zygalakis, Konstantinos C. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (04) :1600-1622
[3]   HIGH WEAK ORDER METHODS FOR STOCHASTIC DIFFERENTIAL EQUATIONS BASED ON MODIFIED EQUATIONS [J].
Abdulle, Assyr ;
Cohen, David ;
Vilmart, Gilles ;
Zygalakis, Konstantinos C. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (03) :A1800-A1823
[4]  
[Anonymous], 1994, APPL MATH MATH COMPU
[5]   LONG-RUN ACCURACY OF VARIATIONAL INTEGRATORS IN THE STOCHASTIC CONTEXT [J].
Bou-Rabee, Nawaf ;
Owhadi, Houman .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 48 (01) :278-297
[6]  
Bou-Rabee N, 2010, COMMUN PUR APPL MATH, V63, P655
[7]   Numerical methods for second-order stochastic differential equations [J].
Burrage, Kevin ;
Lenane, Ian ;
Lythe, Grant .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2007, 29 (01) :245-264
[8]   ACCURATE STATIONARY DENSITIES WITH PARTITIONED NUMERICAL METHODS FOR STOCHASTIC DIFFERENTIAL EQUATIONS [J].
Burrage, Kevin ;
Lythe, Grant .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (03) :1601-1618
[9]   Numerical integrators based on modified differential equations [J].
Chartier, Philippe ;
Hairer, Ernst ;
Vilmart, Gilles .
MATHEMATICS OF COMPUTATION, 2007, 76 (260) :1941-1953
[10]   WEAK BACKWARD ERROR ANALYSIS FOR SDEs [J].
Debussche, Arnaud ;
Faou, Erwan .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2012, 50 (03) :1735-1752