GROUND STATES OF SOME FRACTIONAL SCHRODINGER EQUATIONS ON RN

被引:15
作者
Chang, Xiaojun [1 ,2 ]
机构
[1] NE Normal Univ, Sch Math & Stat, Changchun 130024, Jilin, Peoples R China
[2] Jilin Univ, Coll Math, Changchun 130012, Jilin, Peoples R China
关键词
ground states; fractional Schrodinger equation; variational methods; POSITIVE SOLUTIONS; EXISTENCE; REGULARITY; LAPLACIAN; SYMMETRY;
D O I
10.1017/S0013091514000200
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study a time-independent fractional Schrodinger equation of the form (-Delta)(s)u + V (x)u = g(u) in R-N, where N >= 2, s is an element of (0, 1) and (-Delta)(s) is the fractional Laplacian. By variational methods, we prove the existence of ground state solutions when V is unbounded and the nonlinearity g is subcritical and satisfies the following geometry condition: lim sup(t -> 0+) 2 integral(t)(0) g(tau) d tau/t(2) < inf sigma ((-Delta)(s) + V(x)) < lim inf (t ->+infinity) 2 integral(t)(0) g(tau) d tau/t(2)
引用
收藏
页码:305 / 321
页数:17
相关论文
共 37 条
[1]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[2]   Multiplicity results for some nonlinear Schrodinger equations with potentials [J].
Ambrosetti, A ;
Malchiodi, A ;
Secchi, S .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2001, 159 (03) :253-271
[3]  
[Anonymous], 1986, REGIONAL C SERIES MA
[4]   On the Schrodinger Equation in RN under the Effect of a General Nonlinear Term [J].
Azzollini, A. ;
Pomponio, A. .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2009, 58 (03) :1361-1378
[5]   On some critical problems for the fractional Laplacian operator [J].
Barrios, B. ;
Colorado, E. ;
de Pablo, A. ;
Sanchez, U. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (11) :6133-6162
[6]   EXISTENCE AND MULTIPLICITY RESULTS FOR SOME SUPERLINEAR ELLIPTIC PROBLEMS ON R(N) [J].
BARTSCH, T ;
WANG, ZQ .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1995, 20 (9-10) :1725-1741
[7]  
Bartsch T, 2005, HBK DIFF EQUAT STATI, V2, P1, DOI 10.1016/S1874-5733(05)80009-9
[8]   A concave-convex elliptic problem involving the fractional Laplacian [J].
Braendle, C. ;
Colorado, E. ;
de Pablo, A. ;
Sanchez, U. .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2013, 143 (01) :39-71
[9]  
Brezis H., 2011, Functional analysis, DOI DOI 10.1007/978-0-387-70914-7
[10]   Nonlinear equations for fractional Laplacians, I: Regularity, maximum principles, and Hamiltonian estimates [J].
Cabre, Xavier ;
Sire, Yannick .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2014, 31 (01) :23-53