Neutronic study of UO2-BeO fuel with various claddings

被引:22
作者
Chen, Shengli [1 ,2 ]
Yuan, Cenxi [1 ]
机构
[1] Sun Yat Sen Univ, Sino French Inst Nucl Engn & Technol, Zhuhai 519082, Guangdong, Peoples R China
[2] CEA, DEN DER SPRC LEPh, F-13108 St Paul Les Durance, France
基金
中国国家自然科学基金;
关键词
UO2-BeO; Accident tolerant fuel; Fuel enrichment; Gas production; Power distribution; Isotopic concentration; THERMAL-CONDUCTIVITY; PERFORMANCE;
D O I
10.1016/j.nme.2020.100728
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The neutronic properties of UO2-BeO fuel with various claddings are investigated through the Monte Carlo method and the Linear Reactivity Model. A second order polynomial function is suggested to describe the relationship between the difference of the reactivity at the End of Cycle and two factors, the uranium enrichment and the volume fraction of BeO in the UO2-BeO fuel. The uranium enrichment is determined to ensure the same cycle length for each BeO fraction with zircaloy, FeCrAl, and SiC claddings. Similar neutronic properties are observed between the zircaloy and SiC claddings for a given BeO fraction, including the infinite multiplication factor, the gas release, the power distribution, and the isotopic concentrations. An important feature of UO2-BeO fuel is the production of He-4 , which is significant compared with current UO2 fuel. Lower production rates of xenon and krypton are found in the case of the UO2-BeO-FeCrAl fuel-cladding system, while those in the UO2BeO-zircaloy and UO2-BeO-SiC systems are quite similar to the current UO2-zircaloy system. The power distribution in an assembly and in a fuel pellet is flatter for a higher BeO fraction with the same cladding. Higher peak power is found in fuel assemblies with FeCrAl compared to the other two claddings, while the radial power distribution is quite similar for the three claddings.
引用
收藏
页数:10
相关论文
共 50 条
[31]   Comparative study on the tensile cracking behavior of CrN and Cr coatings for accident-tolerant fuel claddings [J].
Jiang, Jishen ;
Zhan, Dekui ;
Lv, Junnan ;
Ma, Xianfeng ;
He, Xiujie ;
Wang, Dongqing ;
Hu, Yanying ;
Zhai, Hailin ;
Tu, Jiajun ;
Zhang, Wenjie ;
Wang, Biao .
SURFACE & COATINGS TECHNOLOGY, 2021, 409
[32]   Temperature-dependent thermal conductivity and fuel performance of UN-UO2 and UN-X-UO2 (X=Mo, W) composite nuclear fuels by finite element modeling [J].
Sweidan, Faris ;
Costa, Diogo Ribeiro ;
Liu, Huan ;
Olsson, Par .
JOURNAL OF MATERIOMICS, 2024, 10 (04) :937-946
[33]   Simulated UO2 fuel containing CsI by spark plasma sintering [J].
Wangle, T. ;
Tyrpekl, V. ;
Cologna, M. ;
Somers, J. .
JOURNAL OF NUCLEAR MATERIALS, 2015, 466 :150-153
[34]   Preparation and Characterization of Large Grain UO2 for Accident Tolerant Fuel [J].
Zhong, Yi ;
Gao, Rui ;
Li, Bingqing ;
Yang, Zhenliang ;
Huang, Qiqi ;
Wang, Zhiyi ;
Duan, Limei ;
Liu, Xuxu ;
Chu, Mingfu ;
Zhang, Pengcheng ;
Bai, Bin ;
Wang, Yun ;
Cheng, Liang ;
Yan, Biaojie ;
Liu, Tong ;
Li, Rui .
FRONTIERS IN MATERIALS, 2021, 8
[35]   Fission gas release from UO2 nuclear fuel: A review [J].
Rest, J. ;
Cooper, M. W. D. ;
Spino, J. ;
Turnbull, J. A. ;
Van Uffelen, P. ;
Walker, C. T. .
JOURNAL OF NUCLEAR MATERIALS, 2019, 513 :310-345
[36]   Investigation of Modified UO2 Fuel with Anomalously High Thermal Conductivity [J].
I. S. Kurina ;
V. V. Popov ;
V. N. Rumyantsev ;
V. M. Ryabyi ;
M. I. Zakharova ;
A. B. Gaiduchenko ;
M. Yu. Kuz’min ;
G. E. Kiknadze ;
F. N. Kryukov ;
S. V. Kuz’min .
Atomic Energy, 2016, 119 :190-199
[37]   Mechanism and Properties of UO2-Graphene Composite Fuel Prepared by In Situ Synthesis [J].
Wu, Xuezhi ;
Yin, Bangyue .
CRYSTALS, 2022, 12 (02)
[38]   Heat transfer optimization of uo2-mo fuel using genetic algorithms [J].
Gorton, Jacob P. ;
Mcduffee, Joel L. ;
Snarr, Patrick L. ;
Petrie, Christian M. ;
Nelson, Andrew T. .
NUCLEAR ENGINEERING AND DESIGN, 2024, 418
[39]   Rim characteristics and their effects on the thermal conductivity in high burnup UO2 fuel [J].
Lee, BH ;
Koo, YH ;
Sohn, DS .
JOURNAL OF NUCLEAR SCIENCE AND TECHNOLOGY, 2001, 38 (01) :45-52
[40]   Atomistic simulations of nuclear fuel UO2 with machine learning interatomic potentials [J].
Dubois, Eliott T. ;
Tranchida, Julien ;
Bouchet, Johann ;
Maillet, Jean-Bernard .
PHYSICAL REVIEW MATERIALS, 2024, 8 (02)