The arithmetic basilica: A quadratic PCF arboreal Galois group

被引:6
作者
Ahmad, Faseeh [1 ]
Benedetto, Robert L. [1 ]
Cain, Jennifer [1 ]
Carroll, Gregory [1 ]
Fang, Lily [1 ]
机构
[1] Amherst Coll, Amherst, MA 01002 USA
关键词
Arithmetic dynamics; Arboreal Galois representations; REPRESENTATIONS;
D O I
10.1016/j.jnt.2021.10.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The arboreal Galois group of a polynomial f over a field K encodes the action of Galois on the iterated preimages of a root point x(0) is an element of K, analogous to the action of Galois on the l-power torsion of an abelian variety. We compute the arboreal Galois group of the postcritically finite polynomial f(z) = z(2) - 1 when the field K and root point x(0) satisfy a simple condition. We call the resulting group the arithmetic basilica group because of its relation to the basilica group associated with the complex dynamics of f. For K = Q, our condition holds for infinitely many choices of x(0). (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:842 / 868
页数:27
相关论文
共 29 条
[1]  
Aitken W, 2005, INT MATH RES NOTICES, V2005, P855
[2]  
Anderson J., 2018, Association for Women in Mathematics Series, P57
[3]  
Bartholdi L, 2003, TRENDS MATH, P25
[4]   Odoni's conjecture for number fields [J].
Benedetto, Robert L. ;
Juul, Jamie .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2019, 51 (02) :237-250
[5]   A large arboreal Galois representation for a cubic postcritically finite polynomial [J].
Benedetto R.L. ;
Faber X. ;
Hutz B. ;
Juul J. ;
Yasufuku Y. .
Research in Number Theory, 3 (1)
[6]   Arboreal Galois representations [J].
Boston, Nigel ;
Jones, Rafe .
GEOMETRIAE DEDICATA, 2007, 124 (01) :27-35
[7]   Finite index theorems for iterated Galois groups of cubic polynomials [J].
Bridy, Andrew ;
Tucker, Thomas J. .
MATHEMATISCHE ANNALEN, 2019, 373 (1-2) :37-72
[8]   Galois groups of iterates of some unicritical polynomials [J].
Bush, Michael R. ;
Hindes, Wade ;
Looper, Nicole R. .
ACTA ARITHMETICA, 2017, 181 (01) :57-73
[9]  
Ferraguti A, 2020, Arxiv, DOI arXiv:1905.00506
[10]  
Ferraguti A, 2023, Arxiv, DOI arXiv:1907.08608