Linear-quadratic control and quadratic differential forms for multidimensional behaviors

被引:0
作者
Napp, D. [1 ]
Trentelman, H. L. [2 ]
机构
[1] Univ Aveiro, RD Unit Math & Applicat, Dept Math, Aveiro, Portugal
[2] Univ Groningen, Johann Bernoulli Inst Math & Comp Sci, NL-9700 AK Groningen, Netherlands
关键词
Linear-quadratic control; Behaviors; Stationarity; Quadratic differential forms; Behavioral control; SYSTEMS; INTERCONNECTION;
D O I
10.1016/j.laa.2010.08.031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with systems described by constant coefficient linear partial differential equations (nD-systems) from a behavioral point of view. In this context we treat the linear-quadratic control problem where the performance functional is the integral of a quadratic differential form. We look for characterizations of the set of stationary trajectories and of the set of local minimal trajectories with respect to compact support variations, turning out that they are equal if the system is dissipative. Finally we provide conditions for regular implementability of this set of trajectories and give an explicit representation of an optimal controller. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:117 / 130
页数:14
相关论文
共 32 条
[1]  
Anderson B.D., 2007, OPTIMAL CONTROL LINE
[2]   Algorithms for multidimensional spectral factorization and sum of squares [J].
Avelli, D. Napp ;
Trentelman, H. L. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 429 (5-6) :1114-1134
[3]  
AVELLI DN, 2005, P 44 IEEE C DEC CONT
[4]  
COTRONEO T, 2005, THESIS U GRONINGEN N
[5]  
Curtain RF., 2012, INTRO INFINITE DIMEN
[6]  
KOJIMA C, 2006, P 17 INT S MATH THEO, P24
[7]   Canonical forms for polynomial and quadratic differential operators [J].
Kojima, Chiaki ;
Rapisarda, Paolo ;
Takaba, Kiyotsugu .
SYSTEMS & CONTROL LETTERS, 2007, 56 (11-12) :678-684
[8]  
Kwakernaak H., 1972, Linear Optimal Control Systems, V1
[9]   MULTIDIMENSIONAL CONSTANT LINEAR-SYSTEMS [J].
OBERST, U .
ACTA APPLICANDAE MATHEMATICAE, 1990, 20 (1-2) :1-175
[10]   Semidefinite programming relaxations for semialgebraic problems [J].
Parrilo, PA .
MATHEMATICAL PROGRAMMING, 2003, 96 (02) :293-320