Statistical Properties of Whistler-Mode Hiss Waves in the Inner Radiation Belt

被引:9
作者
Yang, Ling [1 ,2 ]
Li, Liuyuan [1 ,2 ]
Cao, Jinbin [1 ,2 ]
Yu, Jiang [3 ,4 ]
机构
[1] Beihang Univ, Sch Space & Environm, Beijing, Peoples R China
[2] MIIT, Key Lab Space Environm Monitoring & Informat Proc, Beijing, Peoples R China
[3] Sun Yat Sun Univ, Sch Atmospher Sci, Planetary Environm & Astrobiol Res Lab PEARL, Zhuhai, Peoples R China
[4] Sun Yat Sen Univ, Key Lab Trop Atmosphere Ocean Syst, Minist Educ, Zhuhai, Peoples R China
基金
中国国家自然科学基金;
关键词
inner radiation belt; occurrence rate of hiss waves; intensity of hiss waves; wave normal angle; propagation direction; substorm dependence; PROPAGATION;
D O I
10.1029/2022JA030444
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Using the Van Allen Probes A and B observations from 01 January 2013 to 28 February 2018, we surveyed statistically the occurrence rate, intensity, and propagation properties of hiss waves in the inner radiation belt (1.1 L <= 2). Like the outer plasmaspheric hiss (L > 2), the occurrence rate and amplitude of lower-band hiss (<600 Hz) are higher in the dayside high-L region (L > 1.3 and magnetic local time [MLT] = 6-20 hr) than the nightside (MLT similar to 20-6 hr) and increase with enhanced substorm activities (AE increases). Furthermore, their peak power spectral densities are located nearly in the same band (similar to 200-500 Hz). The equatorward propagation of middle-latitude hiss suggests that the lower-band hiss waves in the inner radiation belt mostly originate from the outer plasmaspheric hiss at high latitudes. Although the outer plasmaspheric hiss is also a likely source of weak upper-band hiss (>= 600 Hz) in the dayside high-L region (L > 1.3 and MLT = 6-20 hr), the intense upper-band hiss waves mostly appear in the dayside low-L region (L < 1.3) and most nightside regions. In the low-L region, the amplitude of the upper-band hiss has no obvious substorm dependence, and the average of its wave normal angles is comparable to that of lightning-generated whistlers reported in the past.
引用
收藏
页数:11
相关论文
共 35 条
[1]   Statistics of whistler mode waves in the outer radiation belt: Cluster STAFF-SA measurements [J].
Agapitov, Oleksiy ;
Artemyev, Anton ;
Krasnoselskikh, Vladimir ;
Khotyaintsev, Yuri V. ;
Mourenas, Didier ;
Breuillard, Hugo ;
Balikhin, Michael ;
Rolland, Guy .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2013, 118 (06) :3407-3420
[2]   First results of low frequency electromagnetic wave detector of TC-2/Double Star program [J].
Cao, JB ;
Liu, ZX ;
Yang, JY ;
Yian, CX ;
Wang, ZG ;
Zhang, XH ;
Wang, SR ;
Chen, SW ;
Bian, W ;
Dong, W ;
Zhang, ZG ;
Hua, FL ;
Zhou, L ;
Cornilleau-Wehrlin, N ;
de Laporte, B ;
Parrot, M ;
Alleyne, H ;
Yearby, K ;
Santolík, O ;
Mazelle, C .
ANNALES GEOPHYSICAE, 2005, 23 (08) :2803-2811
[3]   Source of the low-altitude hiss in the ionosphere [J].
Chen, Lunjin ;
Santolik, Ondrej ;
Hajos, Mychajlo ;
Zheng, Liheng ;
Zhima, Zeren ;
Heelis, Roderick ;
Hanzelka, Miroslav ;
Horne, Richard B. ;
Parrot, Michel .
GEOPHYSICAL RESEARCH LETTERS, 2017, 44 (05) :2060-2069
[4]   Influence of wave normal angles on hiss-electron interaction in Earth's slot region [J].
Gao, Yuzhu ;
Xiao, Fuliang ;
Yan, Qi ;
Yang, Chang ;
Liu, Si ;
He, Yihua ;
Zhou, Qinghua .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2015, 120 (11) :9385-9400
[5]   Properties of Lightning Generated Whistlers Based on Van Allen Probes Observations and Their Global Effects on Radiation Belt Electron Loss [J].
Green, A. ;
Li, W. ;
Ma, Q. ;
Shen, X. -C. ;
Bortnik, J. ;
Hospodarsky, G. B. .
GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (17)
[6]   The Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) on RBSP [J].
Kletzing, C. A. ;
Kurth, W. S. ;
Acuna, M. ;
MacDowall, R. J. ;
Torbert, R. B. ;
Averkamp, T. ;
Bodet, D. ;
Bounds, S. R. ;
Chutter, M. ;
Connerney, J. ;
Crawford, D. ;
Dolan, J. S. ;
Dvorsky, R. ;
Hospodarsky, G. B. ;
Howard, J. ;
Jordanova, V. ;
Johnson, R. A. ;
Kirchner, D. L. ;
Mokrzycki, B. ;
Needell, G. ;
Odom, J. ;
Mark, D. ;
Pfaff, R., Jr. ;
Phillips, J. R. ;
Piker, C. W. ;
Remington, S. L. ;
Rowland, D. ;
Santolik, O. ;
Schnurr, R. ;
Sheppard, D. ;
Smith, C. W. ;
Thorne, R. M. ;
Tyler, J. .
SPACE SCIENCE REVIEWS, 2013, 179 (1-4) :127-181
[7]   Competitive Influences of Different Plasma Waves on the Pitch Angle Distribution of Energetic Electrons Inside and Outside Plasmasphere [J].
Li, L. Y. ;
Yu, J. ;
Cao, J. B. ;
Chen, L. J. ;
Reeves, G. D. ;
Blake, J. B. .
GEOPHYSICAL RESEARCH LETTERS, 2022, 49 (01)
[8]   Complementary and Catalytic Roles of Man-Made VLF Waves and Natural Plasma Waves in the Loss of Radiation Belt Electrons [J].
Li, L. Y. ;
Wang, Z. Y. ;
Yu, J. ;
Cao, J. B. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2021, 126 (10)
[9]   Effects of Solar Wind Plasma Flow and Interplanetary Magnetic Field on the Spatial Structure of Earth's Radiation Belts [J].
Li, L. Y. ;
Yang, S. S. ;
Cao, J. B. ;
Yu, J. ;
Luo, X. Y. ;
Blake, J. B. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2019, 124 (12) :10332-10344
[10]   The Effects of Solar Wind Dynamic Pressure Changes on the Substorm Auroras and Energetic Electron Injections on 24 August 2005 [J].
Li, L. Y. ;
Wang, Z. Q. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2018, 123 (01) :385-399