Lifetime dynamics of plasmons in the few-atom limit

被引:34
作者
Chapkin, Kyle D. [1 ,2 ]
Bursi, Luca [2 ,3 ]
Stec, Grant J. [2 ,4 ]
Lauchner, Adam [1 ,2 ]
Hogan, Nathaniel J. [1 ,2 ]
Cui, Yao [1 ,2 ]
Nordlander, Peter [1 ,2 ,3 ,5 ]
Halas, Naomi J. [1 ,2 ,3 ,4 ]
机构
[1] Rice Univ, Dept Elect & Comp Engn, Houston, TX 77005 USA
[2] Rice Univ, Lab Nanophoton, Houston, TX 77005 USA
[3] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA
[4] Rice Univ, Dept Chem, POB 1892, Houston, TX 77005 USA
[5] Rice Univ, Dept Mat Sci & Nanoengn, Houston, TX 77005 USA
关键词
plasmonics; excited-state dynamics; molecular plasmons; plasmonicity; lifetime; LIGHT; STATE;
D O I
10.1073/pnas.1805357115
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Polycyclic aromatic hydrocarbon (PAH) molecules are essentially graphene in the subnanometer limit, typically consisting of 50 or fewer atoms. With the addition or removal of a single electron, these molecules can support molecular plasmon (collective) resonances in the visible region of the spectrum. Here, we probe the plasmon dynamics in these quantum systems by measuring the excited-state lifetime of three negatively charged PAH molecules: anthanthrene, benzo[ghi]perylene, and perylene. In contrast to the molecules in their neutral state, these three systems exhibit far more rapid decay dynamics due to the deexcitation of multiple electron-hole pairs through molecular plasmon "dephasing" and vibrational relaxation. This study provides a look into the distinction between collective and single-electron excitation dynamics in the purely quantum limit and introduces a conceptual framework with which to visualize molecular plasmon decay.
引用
收藏
页码:9134 / 9139
页数:6
相关论文
共 46 条
[11]   Measurement of the distribution of site enhancements in surface-enhanced Raman scattering [J].
Fang, Ying ;
Seong, Nak-Hyun ;
Dlott, Dana D. .
SCIENCE, 2008, 321 (5887) :388-392
[12]  
Frisch, 2016, GAUSSIAN 16 REVISION
[13]   Quantum mechanical origin of the plasmon: from molecular systems to nanoparticles [J].
Guidez, Emilie B. ;
Aikens, Christine M. .
NANOSCALE, 2014, 6 (20) :11512-11527
[14]   Origin and TDDFT Benchmarking of the Plasmon Resonance in Acenes [J].
Guidez, Emilie B. ;
Aikens, Christine M. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (41) :21466-21475
[15]   Plasmonics in graphene at infrared frequencies [J].
Jablan, Marinko ;
Buljan, Hrvoje ;
Soljacic, Marin .
PHYSICAL REVIEW B, 2009, 80 (24)
[16]   Graphene Plasmonics: A Platform for Strong Light-Matter Interactions [J].
Koppens, Frank H. L. ;
Chang, Darrick E. ;
Javier Garcia de Abajo, F. .
NANO LETTERS, 2011, 11 (08) :3370-3377
[17]   Plasmons in molecules: Microscopic characterization based on orbital transitions and momentum conservation [J].
Krauter, Caroline M. ;
Schirmer, Jochen ;
Jacob, Christoph R. ;
Pernpointner, Markus ;
Dreuw, Andreas .
JOURNAL OF CHEMICAL PHYSICS, 2014, 141 (10)
[18]   Molecular Plasmonics [J].
Lauchner, Adam ;
Schlather, Andrea E. ;
Manjavacas, Alejandro ;
Cui, Yao ;
McClain, Michael J. ;
Stec, Grant J. ;
Javier Garcia de Abajo, F. ;
Nordlander, Peter ;
Halas, Naomi J. .
NANO LETTERS, 2015, 15 (09) :6208-6214
[19]   Ultrafast dephasing of single nanoparticles studied by two-pulse second-order interferometry [J].
Liau, YH ;
Unterreiner, AN ;
Chang, Q ;
Scherer, NF .
JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (11) :2135-2142
[20]   Transition from nanoparticle to molecular behavior: a femtosecond transient absorption study of a size-selected 28 atom gold cluster [J].
Link, S ;
El-Sayed, MA ;
Schaaff, TG ;
Whetten, RL .
CHEMICAL PHYSICS LETTERS, 2002, 356 (3-4) :240-246