Exploiting Lithium-Ether Co-Intercalation in Graphite for High-Power Lithium-Ion Batteries

被引:159
作者
Kim, Haegyeom [1 ,4 ]
Lim, Kyungmi [1 ]
Yoon, Gabin [1 ,2 ]
Park, Jae-Hyuk [2 ,3 ]
Ku, Kyojin [1 ]
Lim, Hee-Dae [1 ,5 ]
Sung, Yung-Eun [2 ,3 ]
Kang, Kisuk [1 ,2 ]
机构
[1] Seoul Natl Univ, Res Inst Adv Mat, Dept Mat Sci & Engn, 1 Gwanak Ro, Seoul 151742, South Korea
[2] Seoul Natl Univ, Inst Basic Sci, Ctr Nanoparticle Res, 1 Gwanak Ro, Seoul 151742, South Korea
[3] Seoul Natl Univ, Sch Chem & Biol Engn, 1 Gwanak Ro, Seoul 151742, South Korea
[4] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA
[5] Univ Calif San Diego, Dept NanoEngn, La Jolla, CA 92093 USA
关键词
co-intercalation; first-principles calculations; graphite; high-power batteries; lithium-ion batteries; ELECTROCHEMICAL ENERGY-STORAGE; RECHARGEABLE LI; PROPYLENE CARBONATE; THERMAL-STABILITY; ELECTROLYTE; METAL; ANODE; INTERFACE; MECHANISM; DENSITY;
D O I
10.1002/aenm.201700418
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The intercalation of lithium ions into graphite electrode is the key underlying mechanism of modern lithium-ion batteries. However, co-intercalation of lithium-ions and solvent into graphite is considered undesirable because it can trigger the exfoliation of graphene layers and destroy the graphite crystal, resulting in poor cycle life. Here, it is demonstrated that the [lithium-solvent](+) intercalation does not necessarily cause exfoliation of the graphite electrode and can be remarkably reversible with appropriate solvent selection. First. principles calculations suggest that the chemical compatibility of the graphite host and [lithium-solvent](+) complex ion strongly affects the reversibility of the co-intercalation, and comparative experiments confirm this phenomenon. Moreover, it is revealed that [lithium-ether](+) co-intercalation of natural graphite electrode enables much higher power capability than normal lithium intercalation, without the risk of lithium metal plating, with retention of approximate to 87% of the theoretical capacity at current density of 1 A g(-1). This unusual high rate capability of the co-intercalation is attributed to the (i) absence of the desolvation step, (ii) negligible formation of the solid-electrolyte interphase on graphite surface, and (iii) fast charge-transfer kinetics. This work constitutes the first step toward the utilization of fast and reversible [lithium-solvent](+) complex ion intercalation chemistry in graphite for rechargeable battery technology.
引用
收藏
页数:10
相关论文
共 58 条
[1]   Solvated Li-ion transfer at interface between graphite and electrolyte [J].
Abe, T ;
Fukuda, H ;
Iriyama, Y ;
Ogumi, Z .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (08) :A1120-A1123
[2]   Correlation between cointercalation of solvents and electrochemical intercalation of lithium into graphite in propylene carbonate solution [J].
Abe, T ;
Kawabata, N ;
Mizutani, Y ;
Inaba, M ;
Ogumi, Z .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (03) :A257-A261
[3]   The influence of lithium salt on the interfacial reactions controlling the thermal stability of graphite anodes [J].
Andersson, AM ;
Herstedt, M ;
Bishop, AG ;
Edström, K .
ELECTROCHIMICA ACTA, 2002, 47 (12) :1885-1898
[4]   THE CATHODIC DECOMPOSITION OF PROPYLENE CARBONATE IN LITHIUM BATTERIES [J].
ARAKAWA, M ;
YAMAKI, JI .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1987, 219 (1-2) :273-280
[5]   Capacity fade mechanisms and side reactions in lithium-ion batteries [J].
Arora, P ;
White, RE ;
Doyle, M .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (10) :3647-3667
[6]  
Augustyn V, 2013, NAT MATER, V12, P518, DOI [10.1038/NMAT3601, 10.1038/nmat3601]
[7]   A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions [J].
Aurbach, D ;
Zinigrad, E ;
Cohen, Y ;
Teller, H .
SOLID STATE IONICS, 2002, 148 (3-4) :405-416
[8]   THE STUDY OF ELECTROLYTE-SOLUTIONS BASED ON ETHYLENE AND DIETHYL CARBONATES FOR RECHARGEABLE LI BATTERIES .2. GRAPHITE-ELECTRODES [J].
AURBACH, D ;
EINELI, Y ;
MARKOVSKY, B ;
ZABAN, A ;
LUSKI, S ;
CARMELI, Y ;
YAMIN, H .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1995, 142 (09) :2882-2890
[9]   On the Surface Chemical Aspects of Very High Energy Density, Rechargeable Li-Sulfur Batteries [J].
Aurbach, Doron ;
Pollak, Elad ;
Elazari, Ran ;
Salitra, Gregory ;
Kelley, C. Scordilis ;
Affinito, John .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (08) :A694-A702
[10]   DENSITY-FUNCTIONAL THERMOCHEMISTRY .3. THE ROLE OF EXACT EXCHANGE [J].
BECKE, AD .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (07) :5648-5652