A coarse-to-fine full attention guided capsule network for medical image segmentation

被引:5
作者
Wan, Jingjing [1 ]
Yue, Suyang [1 ]
Ma, Juan [1 ]
Ma, Xinggang [1 ]
机构
[1] Xuzhou Med Univ, Affiliated Huaian Hosp, Huaian Peoples Hosp 2, Dept Gastroenterol, Huaian 223002, Jiangsu, Peoples R China
关键词
Medical image segmentation; Capsule network; Deep learning; Clinical analysis; Auxiliary diagnosis; FEATURES;
D O I
10.1016/j.bspc.2022.103682
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
As an important material in clinical diagnoses, medical images are widely used by the doctors to discover the diseases and make therapeutic schedules. Accurately locating the lesions and correctly delineating their severities based on the medical images can significantly help to improve the detection rate and diagnosis accuracy of the diseases. In this paper, we design an effective attention guided capsule network, named HR-CapsSegNet, for segmenting medical targets from medical images. First, by forming a capsule-based high-resolution network architecture assisted by cross-branch multiscale feature augmentation, the HR-CapsSegNet performs advantageously in providing multiscale feature representations with high-level strong semantics. Second, by designing a capsule-based full attention mechanism, the feature encoding quality at each scale can be significantly promoted by sticking up the informative feature semantics from a cross-channel global perspective. In addition, by employing a hierarchical coarse-to-fine segmentation strategy, the feature distractions causing false recognitions can be progressively removed to provide an accurate segmentation map. Intensive quantitative assessments, visual examinations, and comparative analyses on four challenging datasets prove the promising applicability and competitive superiority of the HR-CapsSegNet for medical image segmentation applications.
引用
收藏
页数:12
相关论文
共 54 条
[1]   Brain tumor image segmentation via asymmetric/symmetric UNet based on two-pathway-residual blocks [J].
Aghalari, Motahareh ;
Aghagolzadeh, Ali ;
Ezoji, Mehdi .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2021, 69
[2]   The Lung Image Database Consortium, (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans [J].
Armato, Samuel G., III ;
McLennan, Geoffrey ;
Bidaut, Luc ;
McNitt-Gray, Michael F. ;
Meyer, Charles R. ;
Reeves, Anthony P. ;
Zhao, Binsheng ;
Aberle, Denise R. ;
Henschke, Claudia I. ;
Hoffman, Eric A. ;
Kazerooni, Ella A. ;
MacMahon, Heber ;
van Beek, Edwin J. R. ;
Yankelevitz, David ;
Biancardi, Alberto M. ;
Bland, Peyton H. ;
Brown, Matthew S. ;
Engelmann, Roger M. ;
Laderach, Gary E. ;
Max, Daniel ;
Pais, Richard C. ;
Qing, David P-Y ;
Roberts, Rachael Y. ;
Smith, Amanda R. ;
Starkey, Adam ;
Batra, Poonam ;
Caligiuri, Philip ;
Farooqi, Ali ;
Gladish, Gregory W. ;
Jude, C. Matilda ;
Munden, Reginald F. ;
Petkovska, Iva ;
Quint, Leslie E. ;
Schwartz, Lawrence H. ;
Sundaram, Baskaran ;
Dodd, Lori E. ;
Fenimore, Charles ;
Gur, David ;
Petrick, Nicholas ;
Freymann, John ;
Kirby, Justin ;
Hughes, Brian ;
Casteele, Alessi Vande ;
Gupte, Sangeeta ;
Sallam, Maha ;
Heath, Michael D. ;
Kuhn, Michael H. ;
Dharaiya, Ekta ;
Burns, Richard ;
Fryd, David S. .
MEDICAL PHYSICS, 2011, 38 (02) :915-931
[3]   Level set segmentation with shape prior knowledge using intrinsic rotation, translation and scaling alignment [J].
Arrieta, Cristobal ;
Sing-Long, Carlos A. ;
Mura, Joaquin ;
Irarrazaval, Pablo ;
Andia, Marcelo E. ;
Uribe, Sergio ;
Tejos, Cristian .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2021, 63
[4]   Skin lesion segmentation from dermoscopic images by using Mask R-CNN, Retina-Deeplab, and graph-based methods [J].
Bagheri, Fatemeh ;
Tarokh, Mohammad Jafar ;
Ziaratban, Majid .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2021, 67
[5]   A deep dense residual network with reduced parameters for volumetric brain tissue segmentation from MR images [J].
Basnet, Ramesh ;
Ahmad, M. Omair ;
Swamy, M. N. S. .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2021, 70
[6]   AI applications to medical images: From machine learning to deep learning [J].
Castiglioni, Isabella ;
Rundo, Leonardo ;
Codari, Marina ;
Leo, Giovanni Di ;
Salvatore, Christian ;
Interlenghi, Matteo ;
Gallivanone, Francesca ;
Cozzi, Andrea ;
D'Amico, Natascha Claudia ;
Sardanelli, Francesco .
PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2021, 83 :9-24
[7]   Semi-supervised task-driven data augmentation for medical image segmentation [J].
Chaitanya, Krishna ;
Karani, Neerav ;
Baumgartner, Christian F. ;
Erdil, Ertunc ;
Becker, Anton ;
Donati, Olivio ;
Konukoglu, Ender .
MEDICAL IMAGE ANALYSIS, 2021, 68
[8]   A modified graph cuts image segmentation algorithm with adaptive shape constraints and its application to computed tomography images [J].
Chen, Hong ;
Pan, Xianpan ;
Lu, Xuesong ;
Xie, Qinlan .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2020, 62 (62)
[9]   One-Shot Generative Adversarial Learning for MRI Segmentation of Craniomaxillofacial Bony Structures [J].
Chen, Xu ;
Lian, Chunfeng ;
Wang, Li ;
Deng, Hannah ;
Fung, Steve H. ;
Nie, Dong ;
Thung, Kim-Han ;
Yap, Pew-Thian ;
Gateno, Jaime ;
Xia, James J. ;
Shen, Dinggang .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2020, 39 (03) :787-796
[10]  
Codella NCF, 2018, I S BIOMED IMAGING, P168, DOI 10.1109/ISBI.2018.8363547