ON A DISCRETE VERSION OF TANAKA'S THEOREM FOR MAXIMAL FUNCTIONS

被引:58
作者
Bober, Jonathan [1 ]
Carneiro, Emanuel [1 ]
Hughes, Kevin [2 ]
Pierce, Lillian B. [3 ]
机构
[1] Inst Adv Study, Sch Math, Princeton, NJ 08540 USA
[2] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
[3] Inst Adv Study, Sch Math, Princeton, NJ 08540 USA
基金
美国国家科学基金会;
关键词
Maximal operators; Sobolev spaces; discrete operators; Tanaka's theorem; HARMONIC-ANALYSIS; ERGODIC THEOREM; ANALOGS; REGULARITY;
D O I
10.1090/S0002-9939-2011-11008-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove a discrete version of Tanaka's theorem for the Hardy-Littlewood maximal operator in dimension n = 1, both in the non-centered and centered cases. For the non-centered maximal operator (M) over tilde we prove that, given a function f : Z -> R of bounded variation, Var((M) over tilde (f)) <= Var(f), where Var(f) represents the total variation of f. For the centered maximal Operator M we prove that, given a function f : Z -> R such that f is an element of l(1)(Z), Var(Mf) <= C parallel to f parallel to(l1(z)). This provides a positive solution to a question of Hajlasz and Onninen in the discrete one-dimensional case.
引用
收藏
页码:1669 / 1680
页数:12
相关论文
共 19 条
[1]   Functions of bounded variation, the derivative of the one dimensional maximal function, and applications to inequalities [J].
Aldaz, J. M. ;
Perez Lazaro, J. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 359 (05) :2443-2461
[2]  
[Anonymous], 1993, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals
[3]   ON THE MAXIMAL ERGODIC THEOREM FOR CERTAIN SUBSETS OF THE INTEGERS [J].
BOURGAIN, J .
ISRAEL JOURNAL OF MATHEMATICS, 1988, 61 (01) :39-72
[4]   ON THE POINTWISE ERGODIC THEOREM ON LP FOR ARITHMETIC SETS [J].
BOURGAIN, J .
ISRAEL JOURNAL OF MATHEMATICS, 1988, 61 (01) :73-84
[5]   On the regularity of maximal operators [J].
Carneiro, Emanuel ;
Moreira, Diego .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (12) :4395-4404
[6]  
Hajlasz P, 2004, ANN ACAD SCI FENN-M, V29, P167
[7]  
Hajlasz P, 2010, P AM MATH SOC, V138, P165
[8]   Lp boundedness of discrete singular radon transforms [J].
Ionescu, AD ;
Wainger, S .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 19 (02) :357-383
[9]   Discrete Radon transforms and applications to ergodic theory [J].
Ionescu, Alexandru D. ;
Magyar, Akos ;
Stein, Elias M. ;
Wainger, Stephen .
ACTA MATHEMATICA, 2007, 198 (02) :231-298
[10]   Regularity of the fractional maximal function [J].
Kinnunen, J ;
Saksman, E .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2003, 35 :529-535