ON A DISCRETE VERSION OF TANAKA'S THEOREM FOR MAXIMAL FUNCTIONS

被引:57
作者
Bober, Jonathan [1 ]
Carneiro, Emanuel [1 ]
Hughes, Kevin [2 ]
Pierce, Lillian B. [3 ]
机构
[1] Inst Adv Study, Sch Math, Princeton, NJ 08540 USA
[2] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
[3] Inst Adv Study, Sch Math, Princeton, NJ 08540 USA
基金
美国国家科学基金会;
关键词
Maximal operators; Sobolev spaces; discrete operators; Tanaka's theorem; HARMONIC-ANALYSIS; ERGODIC THEOREM; ANALOGS; REGULARITY;
D O I
10.1090/S0002-9939-2011-11008-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove a discrete version of Tanaka's theorem for the Hardy-Littlewood maximal operator in dimension n = 1, both in the non-centered and centered cases. For the non-centered maximal operator (M) over tilde we prove that, given a function f : Z -> R of bounded variation, Var((M) over tilde (f)) <= Var(f), where Var(f) represents the total variation of f. For the centered maximal Operator M we prove that, given a function f : Z -> R such that f is an element of l(1)(Z), Var(Mf) <= C parallel to f parallel to(l1(z)). This provides a positive solution to a question of Hajlasz and Onninen in the discrete one-dimensional case.
引用
收藏
页码:1669 / 1680
页数:12
相关论文
共 19 条