Reliability of Lattice Gauge Theories

被引:60
作者
Halimeh, Jad C. [1 ,2 ,3 ,4 ,5 ]
Hauke, Philipp [1 ,2 ,3 ,4 ]
机构
[1] Heidelberg Univ, Kirchhoff Inst Phys, Neuenheimer Feld 227, D-69120 Heidelberg, Germany
[2] Heidelberg Univ, Inst Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany
[3] Univ Trento, INO CNR BEC Ctr, Via Sommar 14, I-38123 Trento, Italy
[4] Univ Trento, Dept Phys, Via Sommar 14, I-38123 Trento, Italy
[5] Max Planck Inst Phys Komplexer Syst, Nothnitzer Str 38, D-01187 Dresden, Germany
关键词
QUANTUM SIMULATION; !text type='PYTHON']PYTHON[!/text] FRAMEWORK; DYNAMICS; SYMMETRY; LIGHT; QUTIP;
D O I
10.1103/PhysRevLett.125.030503
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Currently, there are intense experimental efforts to realize lattice gauge theories in quantum simulators. Except for specific models, however, practical quantum simulators can never be fine-tuned to perfect local gauge invariance. There is thus a strong need for a rigorous understanding of gauge-invariance violation and how to reliably protect against it. As we show through analytic and numerical evidence, in the presence of a gauge invariance-breaking term the gauge violation accumulates only perturbatively at short times before proliferating only at very long times. This proliferation can be suppressed up to infinite times by energetically penalizing processes that drive the dynamics away from the initial gauge-invariant sector. Our results provide a theoretical basis that highlights a surprising robustness of gauge-theory quantum simulators.
引用
收藏
页数:6
相关论文
共 43 条
[1]   Spin liquids in frustrated magnets [J].
Balents, Leon .
NATURE, 2010, 464 (7286) :199-208
[2]   Atomic Quantum Simulation of Dynamical Gauge Fields Coupled to Fermionic Matter: From String Breaking to Evolution after a Quench [J].
Banerjee, D. ;
Dalmonte, M. ;
Mueller, M. ;
Rico, E. ;
Stebler, P. ;
Wiese, U. -J. ;
Zoller, P. .
PHYSICAL REVIEW LETTERS, 2012, 109 (17)
[3]   Coupling ultracold matter to dynamical gauge fields in optical lattices: From flux attachment to Z2 lattice gauge theories [J].
Barbiero, Luca ;
Schweizer, Christian ;
Aidelsburger, Monika ;
Demler, Eugene ;
Goldman, Nathan ;
Grusdt, Fabian .
SCIENCE ADVANCES, 2019, 5 (10)
[4]  
Barros J. C. P., ARXIV191106022
[5]  
Bauls M. C., ARXIV191100003
[6]   Scaling up quantum simulations [J].
Berges, Juergen .
NATURE, 2019, 569 (7756) :339-340
[7]   Probing many-body dynamics on a 51-atom quantum simulator [J].
Bernien, Hannes ;
Schwartz, Sylvain ;
Keesling, Alexander ;
Levine, Harry ;
Omran, Ahmed ;
Pichler, Hannes ;
Choi, Soonwon ;
Zibrov, Alexander S. ;
Endres, Manuel ;
Greiner, Markus ;
Vuletic, Vladan ;
Lukin, Mikhail D. .
NATURE, 2017, 551 (7682) :579-+
[8]   Confined Phases of One-Dimensional Spinless Fermions Coupled to Z2 Gauge Theory [J].
Borla, Umberto ;
Verresen, Ruben ;
Grusdt, Fabian ;
Moroz, Sergej .
PHYSICAL REVIEW LETTERS, 2020, 124 (12)
[9]  
Calzetta EA, 2008, CAM M MATH, P1, DOI 10.1017/CBO9780511535123
[10]  
Cheng T.P., 1984, Gauge Theory of Elementary Particle Physics