Lithium Extraction from Seawater through Pulsed Electrochemical Intercalation

被引:232
作者
Liu, Chong [1 ,2 ]
Li, Yanbin [1 ]
Lin, Dingchang [1 ]
Hsu, Po-Chun [3 ,7 ]
Liu, Bofei [1 ]
Yan, Gangbin [2 ]
Wu, Tong [1 ]
Cui, Yi [1 ,4 ]
Chu, Steven [5 ,6 ]
机构
[1] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
[2] Univ Chicago, Pritzker Sch Mol Engn, Chicago, IL 60637 USA
[3] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA
[4] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA
[5] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
[6] Stanford Univ, Dept Mol & Cellular Physiol, Stanford, CA 94305 USA
[7] Duke Univ, Dept Mech Engn & Mat Sci, Durham, NC 27708 USA
关键词
ION BATTERIES; SODIUM-ION; RECOVERY; STABILITY; LIFEPO4; DIFFUSION; OXYGEN;
D O I
10.1016/j.joule.2020.05.017
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
It is highly attractive to develop efficient methods to directly extract Li from seawater to secure the supply of Li. However, high concentration of Na in the seawater poses a great challenge in Li extraction. Here, we developed pulsed-rest and pulse-rest-reverse pulse-rest electrochemical intercalation methods with TiO2-coated FePO4 electrodes for Li extraction. The method can lower the intercalation overpotential and successfully boost the Li selectivity. Moreover, the pulse-rest-reverse pulse-rest method can also promote electrode crystal structure stability during the co-intercalation of Li and Na and prolong the lifetime of the electrode. We demonstrated 10 cycles of successful and stable Li extraction with 1:1 of Li to Na recovery from authentic seawater, which is equivalent to the selectivity of similar to 1.8 x 10(4). Also, with lake water of higher initial Li/Na ratio of 1.6 x 10(-3), we achieved Li extraction with more than 50:1 of Li to Na recovery.
引用
收藏
页码:1459 / 1469
页数:11
相关论文
共 35 条
[1]  
Allison E., 2018, PETROLEUM ENV, P102
[2]   Dynamics of Lithium Dendrite Growth and Inhibition: Pulse Charging Experiments and Monte Carlo Calculations [J].
Aryanfar, Asghar ;
Brooks, Daniel ;
Merinov, Boris V. ;
Goddard, William A., III ;
Colussi, Agustin J. ;
Hoffmann, Michael R. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2014, 5 (10) :1721-1726
[3]   Suppression of Phase Separation in LiFePO4 Nanoparticles During Battery Discharge [J].
Bai, Peng ;
Cogswell, Daniel A. ;
Bazant, Martin Z. .
NANO LETTERS, 2011, 11 (11) :4890-4896
[4]  
Bardi Ugo, 2010, Sustainability, V2, P122, DOI 10.3390/su2040980
[5]   Pulse and pulse reverse plating - Conceptual, advantages and applications [J].
Chandrasekar, M. S. ;
Pushpavanam, Malathy .
ELECTROCHIMICA ACTA, 2008, 53 (08) :3313-3322
[6]   Lithium recovery from salt lake brine by H2TiO3 [J].
Chitrakar, Ramesh ;
Makita, Yoji ;
Ooi, Kenta ;
Sonoda, Akinari .
DALTON TRANSACTIONS, 2014, 43 (23) :8933-8939
[7]   Synthesis of Iron-Doped Manganese Oxides with an Ion-Sieve Property: Lithium Adsorption from Bolivian Brine [J].
Chitrakar, Ramesh ;
Makita, Yoji ;
Ooi, Kenta ;
Sonoda, Akinari .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2014, 53 (09) :3682-3688
[8]   Calculations of Li-Ion Diffusion in Olivine Phosphates [J].
Dathar, Gopi Krishna Phani ;
Sheppard, Daniel ;
Stevenson, Keith J. ;
Henkelman, Graeme .
CHEMISTRY OF MATERIALS, 2011, 23 (17) :4032-4037
[9]   Classical and Quantum Modeling of Li and Na Diffusion in FePO4 [J].
Dixit, Mudit ;
Engel, Hamutal ;
Eitan, Reuven ;
Aurbach, Doron ;
Levi, Mikhael D. ;
Kosa, Monica ;
Major, Dan Thomas .
JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (28) :15801-15809
[10]   Assessment of world lithium resources and consequences of their geographic distribution on the expected development of the electric vehicle industry [J].
Grosjean, Camille ;
Miranda, Pamela Herrera ;
Perrin, Marion ;
Poggi, Philippe .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2012, 16 (03) :1735-1744