Model-based specific growth rate control for Pichia pastoris to improve recombinant protein production

被引:20
|
作者
Ren, HT
Yuan, JQ
机构
[1] Shanghai Jiao Tong Univ, Dept Automat, Shanghai 200030, Peoples R China
[2] ECUST, State Key Lab Bioreactor Engn, Shanghai 200237, Peoples R China
关键词
Pichia pastoris; recombinant human serum albumin; specific growth rate control; feeding profile; process optimization;
D O I
10.1002/jctb.1321
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Constant specific growth rate control in the methanol growth phase was investigated for the fed-batch cultivation of Pichia pastoris expressing recombinant human serum albumin (rHSA). The methanol feeding strategy was determined based on an earlier proposed macrokinetic model to maintain the specific growth rate at preset levels. The experimental results demonstrate that the control strategy of constant specific growth rate is more effective than that of constant feeding rate to maximize production. Furthermore, the most productive setpoint of the specific growth rate is found between 0.005 and 0.006 h(-1), which yields protein concentrations higher than 5 g1(-1) at 160 h. In addition, a setpoint of 0.008 h(-1) is suggested as the upper limit for specific growth rate control for the given expression system. (c) 2005 Society of Chemical Industry.
引用
收藏
页码:1268 / 1272
页数:5
相关论文
共 50 条
  • [31] Production of Recombinant Human Growth Hormone Conjugated with a Transcytotic Peptide in Pichia pastoris for Effective Oral Protein Delivery
    Lee, Jun-Yeong
    Kang, Sang-Kee
    Li, Hui-Shan
    Choi, Chang-Yun
    Park, Tae-Eun
    Bok, Jin-Duck
    Lee, Seung-Ho
    Cho, Chong-Su
    Choi, Yun-Jaie
    MOLECULAR BIOTECHNOLOGY, 2015, 57 (05) : 430 - 438
  • [32] Process Control and Optimization for Heterologous Protein Production by Methylotrophic Pichia pastoris
    Gao Minjie
    Shi Zhongping
    CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2013, 21 (02) : 216 - 226
  • [33] Impact of methanol concentration on secreted protein production in oxygen-limited cultures of recombinant Pichia pastoris
    Khatri, NK
    Hoffmann, F
    BIOTECHNOLOGY AND BIOENGINEERING, 2006, 93 (05) : 871 - 879
  • [34] The production of recombinant dengue virus E protein using Escherichia coli and Pichia pastoris
    Sugrue, RJ
    Cui, TA
    Xu, QR
    Fu, JL
    Chan, YC
    JOURNAL OF VIROLOGICAL METHODS, 1997, 69 (1-2) : 159 - 169
  • [35] Quantitative comparison of dynamic physiological feeding profiles for recombinant protein production with Pichia pastoris
    Spadiut, Oliver
    Zalai, Denes
    Dietzsch, Christian
    Herwig, Christoph
    BIOPROCESS AND BIOSYSTEMS ENGINEERING, 2014, 37 (06) : 1163 - 1172
  • [36] Optimisation of substrate feeding in shake flask cultures of Pichia pastoris for recombinant protein production
    Monika Bollok
    Maria Ruottinen
    Mirja Krause
    Antti Vasala
    Eija-Riitta Hämäläinen
    Antje Neubauer
    Johanna Myllyharju
    Peter Neubauer
    Microbial Cell Factories, 5 (Suppl 1)
  • [37] In-silico determination of Pichia pastoris signal peptides for extracellular recombinant protein production
    Massahi, Aslan
    Calik, Pinar
    JOURNAL OF THEORETICAL BIOLOGY, 2015, 364 : 179 - 188
  • [38] Control of recombinant human endostatin production in fed-batch cultures of Pichia pastoris using the methanol feeding rate
    Li, ZJ
    Zhao, QH
    Liang, H
    Jiang, SL
    Chen, T
    Grella, D
    Shearon, C
    Bottaro, DP
    Sim, BKL
    BIOTECHNOLOGY LETTERS, 2002, 24 (19) : 1631 - 1635
  • [39] Codon optimization of Saccharomyces cerevisiae mating factor alpha prepro-leader to improve recombinant protein production in Pichia pastoris
    Ahn, Jungoh
    Jang, Min-Jung
    Ang, Kok Siong
    Lee, Hongweon
    Choi, Eui-Sung
    Lee, Dong-Yup
    BIOTECHNOLOGY LETTERS, 2016, 38 (12) : 2137 - 2143
  • [40] Optimization of cell density and dilution rate in Pichia pastoris continuous fermentations for production of recombinant proteins
    Zhang, WH
    Liu, CP
    Inan, M
    Meagher, MM
    JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY, 2004, 31 (07) : 330 - 334