Critical obstacle size to deflect shear banding in Zr-based bulk metallic glass composites

被引:14
作者
Jang, J. S. C. [1 ,2 ]
Li, T. H. [1 ]
Tsai, P. H. [1 ]
Huang, J. C. [3 ]
Nieh, T. G. [4 ]
机构
[1] Natl Cent Univ, Inst Mat Sci & Engn, Taipei 32001, Taiwan
[2] Dept Mech Engn, Chungli 320, Taiwan
[3] Natl Sun Yat Sen Univ, Dept Mat & Optoelect Sci, Kaohsiung 804, Taiwan
[4] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA
关键词
Metallic glass; Mechanical properties; Shear band; Casting; MECHANICAL-PROPERTIES; PLASTICITY; TA; BEHAVIOR; ALLOYS;
D O I
10.1016/j.intermet.2015.05.001
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The Zr53Cu22Ni9Al8Ta8 bulk metallic glass composite (BMGC) rods have been reported to present superior plastic strain up to 30% at room temperature. The remarkable plasticity is demonstrated to be contributed by the in-situ Ta-rich precipitates in micro-sized (10-20 micro-meter) plus nano-sized (5-15 nm) scales, homogeneously distributed in the amorphous matrix. These Ta-rich particles act as discrete obstacles, separating and restricting the highly localized shear-banding, avoiding catastrophic shear-through of the whole sample and dramatically enhancing plasticity, as compared with the ZrCuNiAl monolithic BMG. To explore the critical particle size that can effectively deflect the shear banding, the Zr-based BMGC rods were plastically deformed to different strain levels (3%-25%) before fracture for investigating the interaction between the Ta-rich particles (micro- and nano-sized) and shear banding. The results suggest that the critical size of single particle or particle cluster for deflecting the shear band is greater than 20 nm and less than 100 nm. The best estimation suggests about 80 +/- 20 nm. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:102 / 105
页数:4
相关论文
共 28 条
[1]  
[Anonymous], MAT SCI FDN
[2]   Amorphous Mg-based metal foams with ductile hollow spheres [J].
Brothers, A. H. ;
Dunand, D. C. ;
Zheng, Q. ;
Xu, J. .
JOURNAL OF APPLIED PHYSICS, 2007, 102 (02)
[3]   QUASI-STATIC CONSTITUTIVE BEHAVIOR OF ZR41.25TI13.75NI10CU12.5BE22.5 BULK AMORPHOUS-ALLOYS [J].
BRUCK, HA ;
CHRISTMAN, T ;
ROSAKIS, AJ ;
JOHNSON, WL .
SCRIPTA METALLURGICA ET MATERIALIA, 1994, 30 (04) :429-434
[4]   Mechanical behavior of metallic glasses: Microscopic understanding of strength and ductility [J].
Chen, Mingwei .
ANNUAL REVIEW OF MATERIALS RESEARCH, 2008, 38 :445-469
[5]   Synthesis and characterization of particulate reinforced Zr57Nb5Al10Cu15.4Ni12.6 bulk metallic glass composites [J].
Choi-Yim, H ;
Busch, R ;
Köster, U ;
Johnson, WL .
ACTA MATERIALIA, 1999, 47 (08) :2455-2462
[6]   Work-hardenable ductile bulk metallic glass [J].
Das, J ;
Tang, MB ;
Kim, KB ;
Theissmann, R ;
Baier, F ;
Wang, WH ;
Eckert, J .
PHYSICAL REVIEW LETTERS, 2005, 94 (20)
[7]   Two-glassy-phase bulk metallic glass with remarkable plasticity [J].
Du, X. H. ;
Huang, J. C. ;
Hsieh, K. C. ;
Lai, Y. H. ;
Chen, H. M. ;
Jang, J. S. C. ;
Liaw, P. K. .
APPLIED PHYSICS LETTERS, 2007, 91 (13)
[8]   Phase-separated microstructures and shear-banding behavior in a designed Zr-based glass-forming alloy [J].
Du, X. H. ;
Huang, J. C. ;
Chen, H. M. ;
Chou, H. S. ;
Lai, Y. H. ;
Hsieh, K. C. ;
Jang, J. S. C. ;
Liaw, P. K. .
INTERMETALLICS, 2009, 17 (08) :607-613
[9]   Mechanical properties of bulk metallic glasses and composites [J].
Eckert, J. ;
Das, J. ;
Pauly, S. ;
Duhamel, C. .
JOURNAL OF MATERIALS RESEARCH, 2007, 22 (02) :285-301
[10]   Structural bulk metallic glasses with different length-scale of constituent phases [J].
Eckert, J ;
Kühn, U ;
Mattern, N ;
He, G ;
Gebert, A .
INTERMETALLICS, 2002, 10 (11-12) :1183-1190