Topological transition of a non-Markovian dissipative quantum walk

被引:4
作者
Ricottone, A. [1 ]
Rudner, M. S. [2 ,3 ]
Coish, W. A. [1 ]
机构
[1] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada
[2] Univ Copenhagen, Niels Bohr Int Acad, DK-2100 Copenhagen, Denmark
[3] Univ Copenhagen, Ctr Quantum Devices, DK-2100 Copenhagen, Denmark
基金
欧洲研究理事会; 加拿大自然科学与工程研究理事会;
关键词
Markov processes - Topology;
D O I
10.1103/PhysRevA.102.012215
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We extend non-Hermitian topological quantum walks on a Su-Schrieffer-Heeger (SSH) lattice [Phys. Rev. Lett. 102, 065703 (2009)] to the case of non-Markovian evolution. This non-Markovian model is established by coupling each unit cell in the SSH lattice to a reservoir formed by a quasicontinuum of levels. We find a topological transition in this model even in the case of non-Markovian evolution where the walker may visit the reservoir and return to the SSH lattice at a later time. The existence of a topological transition does, however, depend on the low-frequency properties of the reservoir, characterized by a spectral density J(epsilon) proportional to vertical bar epsilon vertical bar(alpha). In particular, we find a robust topological transition for a sub-Ohmic (alpha < 1) and Ohmic (alpha = 1) reservoir, but no topological transition for a super-Ohmic (alpha > 1) reservoir. This behavior is directly related to the well-known localization transition for the spin-boson model. We confirm the presence of non-Markovian dynamics by explicitly evaluating a measure of Markovianity for this model.
引用
收藏
页数:10
相关论文
共 32 条
[1]   QUANTUM RANDOM-WALKS [J].
AHARONOV, Y ;
DAVIDOVICH, L ;
ZAGURY, N .
PHYSICAL REVIEW A, 1993, 48 (02) :1687-1690
[2]   Open Quantum Random Walks [J].
Attal, S. ;
Petruccione, F. ;
Sabot, C. ;
Sinayskiy, I. .
JOURNAL OF STATISTICAL PHYSICS, 2012, 147 (04) :832-852
[3]   Non-Markovian continuous-time quantum walks on lattices with dynamical noise [J].
Benedetti, Claudia ;
Buscemi, Fabrizio ;
Bordone, Paolo ;
Paris, Matteo G. A. .
PHYSICAL REVIEW A, 2016, 93 (04)
[4]  
Breuer H.-P., 2007, The Theory of Open Quantum Systems
[5]   Measure for the Degree of Non-Markovian Behavior of Quantum Processes in Open Systems [J].
Breuer, Heinz-Peter ;
Laine, Elsi-Mari ;
Piilo, Jyrki .
PHYSICAL REVIEW LETTERS, 2009, 103 (21)
[6]   Detection of Zak phases and topological invariants in a chiral quantum walk of twisted photons [J].
Cardano, Filippo ;
D'Errico, Alessio ;
Dauphin, Alexandre ;
Maffei, Maria ;
Piccirillo, Bruno ;
de Lisio, Corrado ;
De Filippis, Giulio ;
Cataudella, Vittorio ;
Santamato, Enrico ;
Marrucci, Lorenzo ;
Lewenstein, Maciej ;
Massignan, Pietro .
NATURE COMMUNICATIONS, 2017, 8
[7]   Universal Computation by Quantum Walk [J].
Childs, Andrew M. .
PHYSICAL REVIEW LETTERS, 2009, 102 (18)
[8]   Quantum walks: a comprehensive review [J].
Elias Venegas-Andraca, Salvador .
QUANTUM INFORMATION PROCESSING, 2012, 11 (05) :1015-1106
[9]  
Fick E., 1990, The Quantum Statistics of Dynamic Processes
[10]   Observing Topological Invariants Using Quantum Walks in Superconducting Circuits [J].
Flurin, E. ;
Ramasesh, V. V. ;
Hacohen-Gourgy, S. ;
Martin, L. S. ;
Yao, N. Y. ;
Siddiqi, I. .
PHYSICAL REVIEW X, 2017, 7 (03)