Microarray gene selection using self-organizing map

被引:0
作者
Vanichayobon, Sirirut [1 ]
Wichaidit, Siriphan [1 ]
Wettayaprasit, Wiphada [1 ]
机构
[1] Prince Songkla Univ, Dept Comp Sci, Artificial Intelligence Res Lab, Hat Yai, Thailand
来源
NEW ADVANCES IN SIMULATION, MODELLING AND OPTIMIZATION (SMO '07) | 2007年
关键词
DNA Microarray; self-organizing map; bioinformatics; gene prediction;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Accuracy, precision, and rapidity of disease prediction are important for disease evaluation in clinic and laboratory studies because different diseases would have different drugs and treatments. This study presents a new technique for cancer prediction from DNA microarray data. The prediction composes of two main steps that are the step of the important gene selection by using statistic methodology and the step of clustering cancer data by using self-organizing map. The experimental DNA microarray data sets are carcinoma, leukemia, and lung cancer. The experimental results are the rules of gene with 100% accuracy for cancer prediction.
引用
收藏
页码:239 / +
页数:2
相关论文
共 21 条
  • [1] [Anonymous], KENT RIDGE BIOMEDICA
  • [2] [Anonymous], 2002, Mach Learn
  • [3] DOVORE J, 1997, STAT EXPLORATION ANA
  • [4] FENG C, 2004, GENE SELECTION CANC, P555
  • [5] GOMES LDT, 2004, PROPOSAL DIRECT ORDE, P11
  • [6] HAIFENG L, MINIMUM ENTROPY CLUS
  • [7] A hierarchical unsupervised growing neural network for clustering gene expression patterns
    Herrero, J
    Valencia, A
    Dopazo, J
    [J]. BIOINFORMATICS, 2001, 17 (02) : 126 - 136
  • [8] Data clustering: A review
    Jain, AK
    Murty, MN
    Flynn, PJ
    [J]. ACM COMPUTING SURVEYS, 1999, 31 (03) : 264 - 323
  • [9] Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks
    Khan, J
    Wei, JS
    Ringnér, M
    Saal, LH
    Ladanyi, M
    Westermann, F
    Berthold, F
    Schwab, M
    Antonescu, CR
    Peterson, C
    Meltzer, PS
    [J]. NATURE MEDICINE, 2001, 7 (06) : 673 - 679
  • [10] LIPO W, 2007, ACCURATE CANC CLASSI, P40