Simulation of wrinkling during textile composite reinforcement forming. Influence of tensile, in-plane shear and bending stiffnesses

被引:348
作者
Boisse, P. [1 ]
Hamila, N. [1 ]
Vidal-Salle, E. [1 ]
Dumont, F. [2 ]
机构
[1] Univ Lyon, LaMCoS, INSA Lyon, F-69621 Villeurbanne, France
[2] Eurocopter Deutschland GmbH, Lab Mat & Proc, D-81663 Munich, Germany
关键词
Fabrics/textiles; Finite element analysis; Buckling; Resin transfer moulding (RTM); Wrinkling; FINITE-ELEMENT; PICTURE FRAME; MECHANICAL-BEHAVIOR; NUMERICAL-ANALYSIS; FABRICS; DEFORMATION; PREFORMS; MODEL;
D O I
10.1016/j.compscitech.2011.01.011
中图分类号
TB33 [复合材料];
学科分类号
摘要
Wrinkling is one of the most common flaws that occur during textile composite reinforcement forming processes. These wrinkles are frequent because of the possible relative motion of fibres making up the reinforcement, leading to a very weak textile bending stiffness. It is necessary to simulate their onset but also their growth and their shape in order to verify that they do not extend to the useful part of the preform. In this paper the simulation of textile composite reinforcement forming and wrinkling is based on a simplified form of virtual internal work defined according to tensions, in-plane shear and bending moments on a unit woven cell. The role of the three rigidities (tensile, in-plane shear and bending) in wrinkling simulations is analysed. If in-plane shear stiffness plays a main role for onset of wrinkles in double-curved shape forming, there is no direct relation between shear angle and wrinkling. Wrinkling is a global phenomenon depending on all strains and stiffnesses and on boundary conditions. The bending stiffness mainly determines the shape of the wrinkles and it is not possible to perform a wrinkle simulation using a membrane approach. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:683 / 692
页数:10
相关论文
共 57 条
[1]  
Advani S.G., 1994, FLOW RHEOLOGY POLYM
[2]  
[Anonymous], 2000, INT J NUMER METH ENG, DOI 10.1016/C2009-0-26332-X
[3]  
Astm, 2002, D1388-96 J
[4]  
Belytschko T, 1983, COMPUTATION METHODS
[5]  
Boisse P, 2007, WOODHEAD PUBL SER TE, P46, DOI 10.1533/9781845692537.46
[6]   Experimental analysis and modeling of biaxial mechanical behavior of woven composite reinforcements [J].
Buet-Gautier, K ;
Boisse, P .
EXPERIMENTAL MECHANICS, 2001, 41 (03) :260-269
[7]   Characterization of mechanical behavior of woven fabrics: Experimental methods and benchmark results [J].
Cao, J. ;
Akkerman, R. ;
Boisse, P. ;
Chen, J. ;
Cheng, H. S. ;
de Graaf, E. F. ;
Gorczyca, J. L. ;
Harrison, P. ;
Hivet, G. ;
Launay, J. ;
Lee, W. ;
Liu, L. ;
Lomov, S. V. ;
Long, A. ;
de Luycker, E. ;
Morestin, F. ;
Padvoiskis, J. ;
Peng, X. Q. ;
Sherwood, J. ;
Stoilova, Tz. ;
Tao, X. M. ;
Verpoest, I. ;
Willems, A. ;
Wiggers, J. ;
Yu, T. X. ;
Zhu, B. .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2008, 39 (06) :1037-1053
[8]   Wrinkling behavior of rectangular plates under lateral constraint [J].
Cao, J ;
Boyce, MC .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 1997, 34 (02) :153-176
[9]   Mechanical modelling of monofilament technical textiles [J].
Carvelli, Valter ;
Corazza, Carola ;
Poggi, Carlo .
COMPUTATIONAL MATERIALS SCIENCE, 2008, 42 (04) :679-691
[10]   Geometry and physics of wrinkling [J].
Cerda, E ;
Mahadevan, L .
PHYSICAL REVIEW LETTERS, 2003, 90 (07) :4