Edge proximity and matching extension in punctured planar triangulations
被引:1
|
作者:
Aldred, R. E. L.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Otago, Dept Math & Stat, POB 56, Dunedin 9054, New ZealandUniv Otago, Dept Math & Stat, POB 56, Dunedin 9054, New Zealand
Aldred, R. E. L.
[1
]
Fujisawa, Jun
论文数: 0引用数: 0
h-index: 0
机构:
Keio Univ, Fac Business & Commerce, Kohoku Ku, Hiyoshi 4-1-1, Yokohama, Kanagawa 2238521, JapanUniv Otago, Dept Math & Stat, POB 56, Dunedin 9054, New Zealand
Fujisawa, Jun
[2
]
Saito, Akira
论文数: 0引用数: 0
h-index: 0
机构:
Nihon Univ, Dept Informat Sci, Setagaya Ku, Sakurajosui 3-25-40, Tokyo 1568550, JapanUniv Otago, Dept Math & Stat, POB 56, Dunedin 9054, New Zealand
Saito, Akira
[3
]
机构:
[1] Univ Otago, Dept Math & Stat, POB 56, Dunedin 9054, New Zealand
[2] Keio Univ, Fac Business & Commerce, Kohoku Ku, Hiyoshi 4-1-1, Yokohama, Kanagawa 2238521, Japan
[3] Nihon Univ, Dept Informat Sci, Setagaya Ku, Sakurajosui 3-25-40, Tokyo 1568550, Japan
A matching M in a graph G is said to be extendable if there exists a perfect matching of G containing M. In 1989, it was shown that every connected planar graph with at least 8 vertices has a matching of size three which is not extendable. In contrast, the study of extending certain matchings of size three or more has made progress in the past decade when the given graph is 5-connected.planar triangulation or 5-connected plane graphs with few non-triangular faces. In this paper, we prove that if G is a 5-connected plane graph of even order in which at most two faces are not triangular and M is a matching of size four in which the edges lie pairwise distance at least three apart, then M is extendable. A related result concerning perfect matching with proscribed edges is shown as well. (C) 2017 Elsevier B.V. All rights reserved.
机构:
Natl Inst Informat, Chiyoda Ku, 2-1-2 Hitotsubashi, Tokyo 1018430, Japan
ERATO Kawarabayashi Large Graph Project, JST, Tokyo, JapanNatl Inst Informat, Chiyoda Ku, 2-1-2 Hitotsubashi, Tokyo 1018430, Japan
Kawarabayashi, Ken-ichi
Ozeki, Kenta
论文数: 0引用数: 0
h-index: 0
机构:
Natl Inst Informat, Chiyoda Ku, 2-1-2 Hitotsubashi, Tokyo 1018430, Japan
ERATO Kawarabayashi Large Graph Project, JST, Tokyo, JapanNatl Inst Informat, Chiyoda Ku, 2-1-2 Hitotsubashi, Tokyo 1018430, Japan
Ozeki, Kenta
Plummer, Michael D.
论文数: 0引用数: 0
h-index: 0
机构:
Vanderbilt Univ, Dept Math, Nashville, TN 37240 USANatl Inst Informat, Chiyoda Ku, 2-1-2 Hitotsubashi, Tokyo 1018430, Japan
机构:
Univ Johannesburg, Dept Pure & Appl Math, POB 524,Auckland Pk, ZA-2006 Johannesburg, South AfricaUniv South Carolina, Dept Math, Columbia, SC 29208 USA
Dankelmann, Peter
Olsen, Trevor
论文数: 0引用数: 0
h-index: 0
机构:
Univ South Carolina, Dept Math, Columbia, SC 29208 USAUniv South Carolina, Dept Math, Columbia, SC 29208 USA