The diffusive relaxation limit of non-isentropic Euler-Maxwell equations for plasmas

被引:10
作者
Yang, Jianwei [1 ]
Wang, Shu [2 ]
Li, Yong [2 ]
Luo, Dang [1 ]
机构
[1] N China Univ Water Resources & Elect Power, Coll Math & Informat Sci, Zhengzhou 450011, Peoples R China
[2] Beijing Univ Technol, Coll Appl Sci, Beijing 100022, Peoples R China
关键词
Non-isentropic Euler-Maxwell equations; Diffusive relaxation limit; The Maxwell iteration; Energy estimates; HYDRODYNAMIC MODEL; HYPERBOLIC SYSTEMS; SINGULAR LIMITS; CONVERGENCE;
D O I
10.1016/j.jmaa.2011.01.065
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper concerns the non-isentropic Euler-Maxwell equations for plasmas with short momentum relaxation time. With the help of the Maxwell-type iteration, it is obtained that, as the relaxation time tends to zero, periodic initial-value problem of certain scaled non-isentropic Euler-Maxwell equations has unique smooth solutions existing in the time interval where the corresponding classical drift-diffusion model has smooth solutions. Meanwhile, we justify a formal derivation of the corresponding drift-diffusion model from the non-isentropic Euler-Maxwell equations. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:343 / 353
页数:11
相关论文
共 23 条
[1]   Electromagnetic wave effects on microwave transistors using a full-wave time-domain model [J].
Alsunaidi, MA ;
Imtiaz, SMS ;
ElGhazaly, SM .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1996, 44 (06) :799-808
[2]  
ALSUNAIDI MA, 1994, IEEE MTT-S, P397, DOI 10.1109/MWSYM.1994.335416
[3]  
[Anonymous], 1984, Applied Mathematical Sciences
[4]  
[Anonymous], 1996, Partial Differential Equations: Basic Theory, DOI DOI 10.1007/978-1-4684-9320-7
[5]  
[Anonymous], 1984, INTRO PLASMA PHYS CO
[6]   Compressible Euler-Maxwell equations [J].
Chen, GQ ;
Jerome, JW ;
Wang, DH .
TRANSPORT THEORY AND STATISTICAL PHYSICS, 2000, 29 (3-5) :311-331
[7]   The energy transport and the drift diffusion equations as relaxation limits of the hydrodynamic model for semiconductors [J].
Gasser, I ;
Natalini, R .
QUARTERLY OF APPLIED MATHEMATICS, 1999, 57 (02) :269-282
[8]  
Jerome JW., 2003, Diff Integral Equ, V16, P1345
[9]  
Jüngel A, 1999, COMMUN PART DIFF EQ, V24, P1007
[10]   SINGULAR LIMITS OF QUASILINEAR HYPERBOLIC SYSTEMS WITH LARGE PARAMETERS AND THE INCOMPRESSIBLE LIMIT OF COMPRESSIBLE FLUIDS [J].
KLAINERMAN, S ;
MAJDA, A .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1981, 34 (04) :481-524