Automated identification of glomeruli and synchronised review of special stains in renal biopsies by machine learning and slide registration: a cross-institutional study

被引:8
作者
Wilbur, David C. [1 ]
Smith, Maxwell L. [2 ]
Cornell, Lynn D. [3 ]
Andryushkin, Alexander [1 ]
Pettus, Jason R. [4 ]
机构
[1] Corista LLC, 9 Damonmill Sq,Suite 6A, Concord, MA 01742 USA
[2] Mayo Clin Scottsdale, Dept Lab Med & Pathol, Phoenix, AZ USA
[3] Mayo Clin Rochester, Dept Lab Med & Pathol, Rochester, MN USA
[4] Dartmouth Hitchcock Med Ctr, Dept Pathol & Lab Med, Lebanon, NH 03766 USA
关键词
glomerulus; image registration; machine learning; renal pathology; whole slide imaging; SYSTEM;
D O I
10.1111/his.14376
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Aims Machine learning in digital pathology can improve efficiency and accuracy via prescreening with automated feature identification. Studies using uniform histological material have shown promise. Generalised application requires validation on slides from multiple institutions. We used machine learning to identify glomeruli on renal biopsies and compared performance between single and multiple institutions. Methods and results Randomly selected, adequately sampled renal core biopsy cases (71) consisting of four stains each (haematoxylin and eosin, trichrome, silver, periodic acid Schiff) from three institutions were digitised at x40. Glomeruli were manually annotated by three renal pathologists using a digital tool. Cases were divided into training/validation (n = 52) and evaluation (n = 19) cohorts. An algorithm was trained to develop three convolutional neural network (CNN) models which tested case cohorts intra- and inter-institutionally. Raw CNN search data from each of the four slides per case were merged into composite regions of interest containing putative glomeruli. The sensitivity and modified specificity of glomerulus detection (versus annotated truth) were calculated for each model/cohort. Intra-institutional (3) sensitivity ranged from 90 to 93%, with modified specificity from 86 to 98%. Interinstitutional (1) sensitivity was 77%, with modified specificity 97%. Combined intra- and inter-institutional (1) sensitivity was 86%, with modified specificity 92%. Conclusions Feature detection sensitivity degrades when training and test material originate from different sites. Training using a combined set of digital slides from three institutions improves performance. Differing histology methods probably account for algorithm performance contrasts. Our data highlight the need for diverse training sets for the development of generalisable machine learning histology algorithms.
引用
收藏
页码:499 / 508
页数:10
相关论文
共 16 条
[1]   Glandular Segmentation of Prostate Cancer: An Illustration of How the Choice of Histopathological Stain Is One Key to Success for Computational Pathology [J].
Avenel, Christophe ;
Tolf, Anna ;
Dragomir, Anca ;
Carlbom, Ingrid B. .
FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2019, 7 (MAY)
[2]   Systematic Analysis of Breast Cancer Morphology Uncovers Stromal Features Associated with Survival [J].
Beck, Andrew H. ;
Sangoi, Ankur R. ;
Leung, Samuel ;
Marinelli, Robert J. ;
Nielsen, Torsten O. ;
van de Vijver, Marc J. ;
West, Robert B. ;
van de Rijn, Matt ;
Koller, Daphne .
SCIENCE TRANSLATIONAL MEDICINE, 2011, 3 (108)
[3]   Using deep convolutional neural networks to identify and classify tumor-associated stroma in diagnostic breast biopsies [J].
Bejnordi, Babak Ehteshami ;
Mullooly, Maeve ;
Pfeiffer, Ruth M. ;
Fan, Shaoqi ;
Vacek, Pamela M. ;
Weaver, Donald L. ;
Herschorn, Sally ;
Brinton, Louise A. ;
van Ginneken, Bram ;
Karssemeijer, Nico ;
Beck, Andrew H. ;
Gierach, Gretchen L. ;
van der Laak, Jeroen A. W. M. ;
Sherman, Mark E. .
MODERN PATHOLOGY, 2018, 31 (10) :1502-1512
[4]   Region-Based Convolutional Neural Nets for Localization of Glomeruli in Trichrome-Stained Whole Kidney Sections [J].
Bukowy, John D. ;
Dayton, Alex ;
Cloutier, Dustin ;
Manis, Anna D. ;
Staruschenko, Alexander ;
Lombard, Julian H. ;
Woods, Leah C. Solberg ;
Beard, Daniel A. ;
Cowley, Allen W., Jr. .
JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2018, 29 (08) :2081-2088
[5]   Clinical-grade computational pathology using weakly supervised deep learning on whole slide images [J].
Campanella, Gabriele ;
Hanna, Matthew G. ;
Geneslaw, Luke ;
Miraflor, Allen ;
Silva, Vitor Werneck Krauss ;
Busam, Klaus J. ;
Brogi, Edi ;
Reuter, Victor E. ;
Klimstra, David S. ;
Fuchs, Thomas J. .
NATURE MEDICINE, 2019, 25 (08) :1301-+
[6]   Enhancing the performance of the AutoPap 300 QC system with optimal staining and presentation of cervical smears [J].
Colgan, TJ ;
Smith, J ;
Patten, SF ;
Lee, JSJ .
ACTA CYTOLOGICA, 1997, 41 (01) :50-55
[7]   Computational Pathology to Discriminate Benign from Malignant Intraductal Proliferations of the Breast [J].
Dong, Fei ;
Irshad, Humayun ;
Oh, Eun-Yeong ;
Lerwill, Melinda F. ;
Brachtel, Elena F. ;
Jones, Nicholas C. ;
Knoblauch, Nicholas W. ;
Montaser-Kouhsari, Laleh ;
Johnson, Nicole B. ;
Rao, Luigi K. F. ;
Faulkner-Jones, Beverly ;
Wilbur, David C. ;
Schnitt, Stuart J. ;
Beck, Andrew H. .
PLOS ONE, 2014, 9 (12)
[8]   Artificial intelligence and algorithmic computational pathology: an introduction with renal allograft examples [J].
Farris, Alton B. ;
Vizcarra, Juan ;
Amgad, Mohamed ;
Cooper, Lee A. D. ;
Gutman, David ;
Hogan, Julien .
HISTOPATHOLOGY, 2021, 78 (06) :791-804
[9]  
Inoue Takashi, 2020, Clin Diagn Pathol, V4, DOI 10.15761/cdp.1000139
[10]   Segmentation of Glomeruli Within Trichrome Images Using Deep Learning [J].
Korman, Shruti ;
Morgan, Laura A. ;
Liang, Benjamin ;
Cheung, McKenzie G. ;
Lin, Christopher Q. ;
Mun, Dan ;
Nader, Ralph G. ;
Belghasem, Mostafa E. ;
Henderson, Joel M. ;
Francis, Jean M. ;
Chitalia, Vipul C. ;
Kolachalama, Vijaya B. .
KIDNEY INTERNATIONAL REPORTS, 2019, 4 (07) :955-962