Deep Learning based Segmentation for Multi MR Imaging Protocols using Transfer Learning for PET Attenuation Correction

被引:0
作者
Mecheter, Imene [1 ]
Amira, Abbes [2 ]
Abbod, Maysam [1 ]
Zaidi, Habib [3 ]
机构
[1] Brunel Univ London, Dept Elect & Comp Engn, Uxbridge, Middx, England
[2] De Montfort Univ, Inst Artificial Intelligence, Leicester, Leics, England
[3] Geneva Univ Hosp, Div Nucl Med & Mol Imaging, Geneva, Switzerland
来源
2020 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI) | 2020年
关键词
Magnetic Resonance Imaging; Segmentation; PET Attenuation Correction; Deep Learning; Transfer Learning;
D O I
10.1109/ssci47803.2020.9308177
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Magnetic resonance (MR) image segmentation is a robust technique used for PET attenuation correction. However, the segmentation of the brain into different tissue classes is a challenging task because of the similarity of pixel intensity values. The objective of this work is to propose a deep learning network to segment T1-weighted MR images of a dataset consists of 50 patients. Additionally, transfer learning is applied to segment another MR image protocol which is T2-weighted. The pretrained network with T1-weighted images is finetuned then tested with a dataset of 14 patients only. The Dice coefficients of air, soft tissue, and bone classes for T1-weighted MR images are 0.98, 0.92 , and 0.79 respectively. The results of transfer learning show the feasibility of finetuning a deep network trained with T1-weighted images to segment T2-weighted images.
引用
收藏
页码:2516 / 2520
页数:5
相关论文
共 12 条
[1]   Deep Learning for Brain MRI Segmentation: State of the Art and Future Directions [J].
Akkus, Zeynettin ;
Galimzianova, Alfiia ;
Hoogi, Assaf ;
Rubin, Daniel L. ;
Erickson, Bradley J. .
JOURNAL OF DIGITAL IMAGING, 2017, 30 (04) :449-459
[2]   SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation [J].
Badrinarayanan, Vijay ;
Kendall, Alex ;
Cipolla, Roberto .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) :2481-2495
[3]   From simultaneous to synergistic MR-PET brain imaging: A review of hybrid MR-PET imaging methodologies [J].
Chen, Zhaolin ;
Jamadar, Sharna D. ;
Li, Shenpeng ;
Sforazzini, Francesco ;
Baran, Jakub ;
Ferris, Nicholas ;
Shah, Nadim Jon ;
Egan, Gary F. .
HUMAN BRAIN MAPPING, 2018, 39 (12) :5126-5144
[4]   Technical Note: Deep learning based MRAC using rapid ultrashort echo time imaging [J].
Jang, Hyungseok ;
Liu, Fang ;
Zhao, Gengyan ;
Bradshaw, Tyler ;
McMillan, Alan B. .
MEDICAL PHYSICS, 2018, 45 (08) :3697-3704
[5]   elastix: A Toolbox for Intensity-Based Medical Image Registration [J].
Klein, Stefan ;
Staring, Marius ;
Murphy, Keelin ;
Viergever, Max A. ;
Pluim, Josien P. W. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2010, 29 (01) :196-205
[6]  
Li DP, 2015, PROC CVPR IEEE, P213, DOI 10.1109/CVPR.2015.7298617
[7]   Deep Learning MR Imaging-based Attenuation Correction for PET/MR Imaging [J].
Liu, Fang ;
Jang, Hyungseok ;
Kijowski, Richard ;
Bradshaw, Tyler ;
McMillan, Alan B. .
RADIOLOGY, 2018, 286 (02) :676-684
[8]  
Long J, 2015, PROC CVPR IEEE, P3431, DOI 10.1109/CVPR.2015.7298965
[9]   Vision 20/20: Magnetic resonance imaging-guided attenuation correction in PET/MRI: Challenges, solutions, and opportunities [J].
Mehranian, Abolfazl ;
Arabi, Hossein ;
Zaidi, Habib .
MEDICAL PHYSICS, 2016, 43 (03) :1130-1155
[10]   U-Net: Convolutional Networks for Biomedical Image Segmentation [J].
Ronneberger, Olaf ;
Fischer, Philipp ;
Brox, Thomas .
MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, PT III, 2015, 9351 :234-241