A quadratic refinement of the Grothendieck-Lefschetz-Verdier trace formula

被引:57
作者
Hoyois, Marc [1 ]
机构
[1] Northwestern Univ, Dept Math, Evanston, IL 60208 USA
关键词
11E81; 14F42; 47H10;
D O I
10.2140/agt.2014.14.3603
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a trace formula in stable motivic homotopy theory over a general base scheme, equating the trace of an endomorphism of a smooth proper scheme with the "Euler characteristic integral" of a certain cohomotopy class over its scheme of fixed points. When the base is a field and the fixed points are etale, we compute this integral in terms of Morel's identification of the ring of endomorphisms of the motivic sphere spectrum with the Grothendieck-Witt ring. In particular, we show that the Euler characteristic of an etale algebra corresponds to the class of its trace form in the Grothendieck-Witt ring.
引用
收藏
页码:3603 / 3658
页数:56
相关论文
共 29 条
[1]  
[Anonymous], 1990, Progr. Math.
[2]  
ARTIN M., 1973, LECT NOTES MATH, V305, DOI 10.1007/BFb0070714
[3]  
ARTIN M., 1972, Theorie des topos et cohomologie etale des schemas, V305
[4]  
Ayoub J, 6 OPERATIONS GROTHEN
[5]  
Ayoub J, 2014, ANN SCI ECOLE NORM S, V47, P1
[6]  
Cisinski D-C, 2012, ARXIV09122110V3
[7]  
CONRAD B., 2007, Journal of the Ramanujan Mathematical Society, V22, P205
[8]  
Dold A., 1983, T MAT I STEKLOVA, V154, P81
[9]  
Fulton W., 1998, INTERSECTION THEORY, DOI [10.1007/978-1-4612-1700-8, DOI 10.1007/978-1-4612-1700-8]
[10]   RESIDUE THEOREM FOR SYMMETRICAL BILINEAR FORMS [J].
GEYER, WD ;
HARDER, G ;
KNEBUSCH, M ;
SCHARLAU, W .
INVENTIONES MATHEMATICAE, 1970, 11 (04) :319-&