Boundary value problems and Hardy spaces associated to the Helmholtz equation in Lipschitz domains

被引:49
作者
Mitrea, M
机构
[1] ROMANIAN ACAD,INST MATH,RO-70700 BUCHAREST,ROMANIA
[2] UNIV MINNESOTA,SCH MATH,MINNEAPOLIS,MN 55455
关键词
D O I
10.1006/jmaa.1996.0350
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we introduce and discuss, in the Clifford algebra framework, certain Hardy-like spaces which are well suited for the study of the Helmholtz equation Delta u + k(2)u = 0 in Lipschitz domains of R(n+1). In particular, in the second part of the paper, these results are used in connection with the classical boundary value problems for the Helmholtz equation in Lipschitz domains in arbitrary space dimensions. In this setting, existence, uniqueness, and optimal estimates are obtained by inverting the corresponding layer potential operators on L(P) for sharp ranges of p's. Also, a detailed discussion of the Helmholtz eigenvalues of Lipschitz domains is presented. (C) 1996 Academic Press, Inc.
引用
收藏
页码:819 / 842
页数:24
相关论文
共 18 条
[1]  
[Anonymous], 1982, RES NOTES MATH
[2]   THE CAUCHY INTEGRAL DEFINES AN OPERATOR ON L2 FOR LIPSCHITZ-CURVES [J].
COIFMAN, RR ;
MCINTOSH, A ;
MEYER, Y .
ANNALS OF MATHEMATICS, 1982, 116 (02) :361-387
[3]  
Colton D., 1983, INTEGRAL EQUATION ME
[4]   HARDY-SPACES AND THE NEUMANN PROBLEM IN L-RHO FOR LAPLACES-EQUATION IN LIPSCHITZ-DOMAINS [J].
DAHLBERG, BEJ ;
KENIG, CE .
ANNALS OF MATHEMATICS, 1987, 125 (03) :437-465
[5]   POTENTIAL TECHNIQUES FOR BOUNDARY-VALUE PROBLEMS ON C1-DOMAINS [J].
FABES, EB ;
JODEIT, M ;
RIVIERE, NM .
ACTA MATHEMATICA, 1978, 141 (3-4) :165-186
[6]  
Garcia-Cuerva J., 1985, MATH STUDIES, V116
[7]  
GARNIR HG, 1958, PROBLEMES AUX LIMITE
[8]  
Gilbert J., 1991, Cambridge Studies in Advan ed Mathemati s, V26
[9]  
IFTIMIE V, 1965, B MATH SOC SCI MATH, V4, P279
[10]  
Journe J.-L., 1983, LECT NOTES MATH, V994