Lasso formulation of the shortest path problem

被引:0
|
作者
Dong, Anqi
Taghvaei, Amirhossein
Georgiou, Tryphon T.
机构
来源
2020 59TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC) | 2020年
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The shortest path problem is formulated as an l(1)-regularized regression problem, known as lasso. Based on this formulation, a connection is established between Dijkstra's shortest path algorithm and the least angle regression (LARS) for the lasso problem. Specifically, the solution path of the lasso problem, obtained by varying the regularization parameter from infinity to zero (the regularization path), corresponds to shortest path trees that appear in the bi-directional Dijkstra algorithm.
引用
收藏
页码:402 / 407
页数:6
相关论文
共 50 条
  • [1] A NEW FORMULATION TO THE SHORTEST PATH PROBLEM WITH TIME WINDOWS AND CAPACITY CONSTRAINTS
    Dondo, R.
    LATIN AMERICAN APPLIED RESEARCH, 2012, 42 (03) : 257 - 265
  • [2] A Shortest Path Problem
    JIA Zhengsheng(Mathematics and Mechanics Department of Taiyuan University of technology Taiyuan 030024)FAN Hui(Foundation Department Shan Xi Mining Industry institute
    JournalofSystemsScienceandSystemsEngineering, 1996, (04) : 496 - 499
  • [3] On the robust shortest path problem
    Yu, G
    Yang, J
    COMPUTERS & OPERATIONS RESEARCH, 1998, 25 (06) : 457 - 468
  • [4] CONSTRAINED SHORTEST PATH PROBLEM
    ANEJA, YP
    NAIR, KPK
    NAVAL RESEARCH LOGISTICS, 1978, 25 (03) : 549 - 555
  • [5] Neutrosophic Shortest Path Problem
    Kumar, Ranjan
    Edaltpanah, S. A.
    Jha, Sripati
    Broumi, Said
    Dey, Arindam
    NEUTROSOPHIC SETS AND SYSTEMS, 2018, 23 : 5 - 15
  • [6] The shortest path problem with an obstructor
    Yamaguchi, K
    Araki, T
    Kashiwabara, T
    ELECTRONICS AND COMMUNICATIONS IN JAPAN PART III-FUNDAMENTAL ELECTRONIC SCIENCE, 1998, 81 (02): : 13 - 23
  • [7] On the shortest α-reliable path problem
    Corredor-Montenegro, David
    Cabrera, Nicolas
    Akhavan-Tabatabaei, Raha
    Medaglia, Andres L.
    TOP, 2021, 29 (01) : 287 - 318
  • [8] Fuzzy shortest path problem
    Okada, Shinkoh
    Gen, Mitsuo
    Computers and Industrial Engineering, 1994, 27 (1-4): : 465 - 468
  • [9] On the Quadratic Shortest Path Problem
    Rostami, Borzou
    Malucelli, Federico
    Frey, Davide
    Buchheim, Christoph
    EXPERIMENTAL ALGORITHMS, SEA 2015, 2015, 9125 : 379 - 390
  • [10] The multiple shortest path problem with path deconfliction
    Hughes, Michael S.
    Lunday, Brian J.
    Weir, Jeffrey D.
    Hopkinson, Kenneth M.
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2021, 292 (03) : 818 - 829