Potential of radiomics and artificial intelligence in myeloma imaging Development of automatic, comprehensive, objective skeletal analyses from whole-body imaging data

被引:3
作者
Wennmann, Markus [1 ]
Murray, Jacob M. [1 ,2 ]
机构
[1] Deutsch Krebsforschungszentrum DKFZ, Abt Radiol, Neuenheimer Feld 280, D-69120 Heidelberg, Germany
[2] Heidelberg Univ, Heidelberg, Vic, Australia
来源
RADIOLOGE | 2022年 / 62卷 / 01期
关键词
Multiple myeloma; Skeleton; Bone marrow; Scan reading; Image analysis; BONE-MARROW SEGMENTATION; MULTIPLE-MYELOMA; MRI;
D O I
10.1007/s00117-021-00940-1
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Clinical/methodical issue Multiple myeloma can affect the complete skeleton, which makes whole-body imaging necessary. With the current assessment of these complex datasets by radiologists, only a small part of the accessible information is assessed and reported. Standard radiological methods Depending on the question and availability, computed tomography (CT), magnetic resonance imaging (MRI), or positron emission tomography (PET) is performed and the results are then visually examined by radiologists. Methodological innovations A combination of automatic skeletal segmentation using artificial intelligence and subsequent radiomics analysis of each individual bone have the potential to provide automatic, comprehensive, and objective skeletal analyses. Performance A few automatic skeletal segmentation algorithms for CT already show promising results. In addition, first studies indicate correlations between radiomics features of bone and bone marrow with established disease markers and therapy response. Achievements Artificial intelligence (AI) and radiomics algorithms for automatic skeletal analysis from whole-body imaging are currently in an early phase of development.
引用
收藏
页码:44 / 50
页数:7
相关论文
共 32 条
[1]   Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach [J].
Aerts, Hugo J. W. L. ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Parmar, Chintan ;
Grossmann, Patrick ;
Cavalho, Sara ;
Bussink, Johan ;
Monshouwer, Rene ;
Haibe-Kains, Benjamin ;
Rietveld, Derek ;
Hoebers, Frank ;
Rietbergen, Michelle M. ;
Leemans, C. Rene ;
Dekker, Andre ;
Quackenbush, John ;
Gillies, Robert J. ;
Lambin, Philippe .
NATURE COMMUNICATIONS, 2014, 5
[2]   Quantification of tumor burden in multiple myeloma by atlas-based semi-automatic segmentation of WB-DWI [J].
Almeida, Silvia D. ;
Santinha, Joao ;
Oliveira, Francisco P. M. ;
Ip, Joana ;
Lisitskaya, Maria ;
Lourenco, Joao ;
Uysal, Aycan ;
Matos, Celso ;
Joao, Cristina ;
Papanikolaou, Nikolaos .
CANCER IMAGING, 2020, 20 (01)
[3]   Impact of Dataset Size on Classification Performance: An Empirical Evaluation in the Medical Domain [J].
Althnian, Alhanoof ;
AlSaeed, Duaa ;
Al-Baity, Heyam ;
Samha, Amani ;
Dris, Alanoud Bin ;
Alzakari, Najla ;
Abou Elwafa, Afnan ;
Kurdi, Heba .
APPLIED SCIENCES-BASEL, 2021, 11 (02) :1-18
[4]   Whole-body bone segmentation from MRI for PET/MRI attenuation correction using shape- based averaging [J].
Arabi, Hossein ;
Zaidi, Habib .
MEDICAL PHYSICS, 2016, 43 (11) :5848-5861
[5]   Extended Texture Analysis of Non-Enhanced Whole-Body MRI Image Data for Response Assessment in Multiple Myeloma Patients Undergoing Systemic Therapy [J].
Ekert, Kaspar ;
Hinterleitner, Clemens ;
Baumgartner, Karolin ;
Fritz, Jan ;
Horger, Marius .
CANCERS, 2020, 12 (03)
[6]   Learning from Imbalanced Data [J].
He, Haibo ;
Garcia, Edwardo A. .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2009, 21 (09) :1263-1284
[7]   International myeloma working group consensus recommendations on imaging in monoclonal plasma cell disorders [J].
Hillengass, Jens ;
Usmani, Saad ;
Rajkumar, S. Vincent ;
Durie, Brian G. M. ;
Mateos, Maria-Victoria ;
Lonial, Sagar ;
Joao, Cristina ;
Anderson, Kenneth C. ;
Garcia-Sanz, Ramon ;
Riva Serra, Eloisa ;
Du, Juan ;
van de Donk, Niels ;
Berdeja, Jesus G. ;
Terpos, Evangelos ;
Zamagni, Elena ;
Kyle, Robert A. ;
San Miguel, Jesus ;
Goldschmidt, Hartmut ;
Giralt, Sergio ;
Kumar, Shaji ;
Raje, Noopur ;
Ludwig, Heinz ;
Ocio, Enrique ;
Schots, Rik ;
Einsele, Hermann ;
Schjesvold, Fredrik ;
Chen, Wen-Ming ;
Abildgaard, Niels ;
Lipe, Brea C. ;
Dytfeld, Dominik ;
Wirk, Baldeep Mona ;
Drake, Matthew ;
Cavo, Michele ;
Jose Lahuerta, Juan ;
Lentzsch, Suzanne .
LANCET ONCOLOGY, 2019, 20 (06) :E302-E312
[8]   nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation [J].
Isensee, Fabian ;
Jaeger, Paul F. ;
Kohl, Simon A. A. ;
Petersen, Jens ;
Maier-Hein, Klaus H. .
NATURE METHODS, 2021, 18 (02) :203-+
[9]   Random survival forest to predict transplant-eligible newly diagnosed multiple myeloma outcome including FDG-PET radiomics: a combined analysis of two independent prospective European trials [J].
Jamet, Bastien ;
Morvan, Ludivine ;
Nanni, Cristina ;
Michaud, Anne-Victoire ;
Bailly, Clement ;
Chauvie, Stephane ;
Moreau, Philippe ;
Touzeau, Cyrille ;
Zamagni, Elena ;
Bodet-Milin, Caroline ;
Kraeber-Bodere, Francoise ;
Mateus, Diana ;
Carlier, Thomas .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2021, 48 (04) :1005-1015
[10]   Automatic bone segmentation in whole-body CT images [J].
Klein, Andre ;
Warszawski, Jan ;
Hillengass, Jens ;
Maier-Hein, Klaus H. .
INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2019, 14 (01) :21-29