Robust optimal planning and control of non-periodic bipedal locomotion with a centroidal momentum model

被引:31
作者
Zhao, Ye [1 ]
Fernandez, Benito R. [2 ]
Sentis, Luis [1 ]
机构
[1] Univ Texas Austin, Human Ctr Robot Lab, Austin, TX 78712 USA
[2] Univ Texas Austin, Neuroengn Res & Dev Lab, Austin, TX 78712 USA
关键词
Phase-space locomotion planning; non-periodic keyframe mapping; robust hybrid automaton; optimal control; DISTURBANCE REJECTION; LEGGED LOCOMOTION; CONTROL DESIGN; WALKING; OPTIMIZATION; BALANCE; HUMANOIDS; STATE;
D O I
10.1177/0278364917730602
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
This study presents a theoretical method for planning and controlling agile bipedal locomotion based on robustly tracking a set of non-periodic keyframe states. Based on centroidal momentum dynamics, we formulate a hybrid phase-space planning and control method that includes the following key components: (i) a step transition solver that enables dynamically tracking non-periodic keyframe states over various types of terrain; (ii) a robust hybrid automaton to effectively formulate planning and control algorithms; (iii) a steering direction model to control the robots heading; (iv) a phase-space metric to measure distance to the planned locomotion manifolds; and (v) a hybrid control method based on the previous distance metric to produce robust dynamic locomotion under external disturbances. Compared with other locomotion methodologies, we have a large focus on non-periodic gait generation and robustness metrics to deal with disturbances. This focus enables the proposed control method to track non-periodic keyframe states robustly over various challenging terrains and under external disturbances, as illustrated through several simulations.
引用
收藏
页码:1211 / 1243
页数:33
相关论文
共 91 条
[31]   Quadrupedal locomotion using hierarchical operational space control [J].
Hutter, Marco ;
Sommer, Hannes ;
Gehring, Christian ;
Hoepflinger, Mark ;
Bloesch, Michael ;
Siegwart, Roland .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2014, 33 (08) :1047-1062
[32]   Full-body compliant human-humanoid interaction: Balancing in the presence of unknown external forces [J].
Hyon, Sang-Ho ;
Hale, Joshua G. ;
Cheng, Gordon .
IEEE TRANSACTIONS ON ROBOTICS, 2007, 23 (05) :884-898
[33]   Disturbance rejection for biped humanoids [J].
Hyon, Sang-Ho ;
Cheng, Gordon .
PROCEEDINGS OF THE 2007 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1-10, 2007, :2668-2675
[34]  
Isidori A, 1985, LECT NOTES CONTROL I
[35]   Biped walking pattern generation by using preview control of zero-moment point [J].
Kajita, S ;
Kanehiro, F ;
Kaneko, K ;
Fujiwara, K ;
Harada, K ;
Yokoi, K ;
Hirukawa, H .
2003 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1-3, PROCEEDINGS, 2003, :1620-1626
[36]   Stabilizing Series-Elastic Point-Foot Bipeds Using Whole-Body Operational Space Control [J].
Kim, Donghyun ;
Zhao, Ye ;
Thomas, Gray ;
Fernandez, Benito R. ;
Sentis, Luis .
IEEE TRANSACTIONS ON ROBOTICS, 2016, 32 (06) :1362-1379
[37]  
Komura T, 2005, IEEE INT CONF ROBOT, P1989
[38]  
Koolen T, 2016, IEEE-RAS INT C HUMAN, P8, DOI 10.1109/HUMANOIDS.2016.7803247
[39]   Capturability-based analysis and control of legged locomotion, Part 1: Theory and application to three simple gait models [J].
Koolen, Twan ;
de Boer, Tomas ;
Rebula, John ;
Goswami, Ambarish ;
Pratt, Jerry .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2012, 31 (09) :1094-1113
[40]   Optimization-based locomotion planning, estimation, and control design for the atlas humanoid robot [J].
Kuindersma, Scott ;
Deits, Robin ;
Fallon, Maurice ;
Valenzuela, Andres ;
Dai, Hongkai ;
Permenter, Frank ;
Koolen, Twan ;
Marion, Pat ;
Tedrake, Russ .
AUTONOMOUS ROBOTS, 2016, 40 (03) :429-455