Robust optimal planning and control of non-periodic bipedal locomotion with a centroidal momentum model

被引:31
作者
Zhao, Ye [1 ]
Fernandez, Benito R. [2 ]
Sentis, Luis [1 ]
机构
[1] Univ Texas Austin, Human Ctr Robot Lab, Austin, TX 78712 USA
[2] Univ Texas Austin, Neuroengn Res & Dev Lab, Austin, TX 78712 USA
关键词
Phase-space locomotion planning; non-periodic keyframe mapping; robust hybrid automaton; optimal control; DISTURBANCE REJECTION; LEGGED LOCOMOTION; CONTROL DESIGN; WALKING; OPTIMIZATION; BALANCE; HUMANOIDS; STATE;
D O I
10.1177/0278364917730602
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
This study presents a theoretical method for planning and controlling agile bipedal locomotion based on robustly tracking a set of non-periodic keyframe states. Based on centroidal momentum dynamics, we formulate a hybrid phase-space planning and control method that includes the following key components: (i) a step transition solver that enables dynamically tracking non-periodic keyframe states over various types of terrain; (ii) a robust hybrid automaton to effectively formulate planning and control algorithms; (iii) a steering direction model to control the robots heading; (iv) a phase-space metric to measure distance to the planned locomotion manifolds; and (v) a hybrid control method based on the previous distance metric to produce robust dynamic locomotion under external disturbances. Compared with other locomotion methodologies, we have a large focus on non-periodic gait generation and robustness metrics to deal with disturbances. This focus enables the proposed control method to track non-periodic keyframe states robustly over various challenging terrains and under external disturbances, as illustrated through several simulations.
引用
收藏
页码:1211 / 1243
页数:33
相关论文
共 91 条
[1]  
Abdallah M, 2005, IEEE INT CONF ROBOT, P1996
[2]  
[Anonymous], 2013, SLIDING MODES CONTRO
[3]  
[Anonymous], ROBOTICS SCI SYSTEMS
[4]   Reactive Planning and Control of Planar Spring-Mass Running on Rough Terrain [J].
Arslan, Omur ;
Saranli, Uluc .
IEEE TRANSACTIONS ON ROBOTICS, 2012, 28 (03) :567-579
[5]  
Audren H, 2014, IEEE INT C INT ROBOT, P4030, DOI 10.1109/IROS.2014.6943129
[6]   A unified framework for hybrid control: Model and optimal control theory [J].
Branicky, MS ;
Borkar, VS ;
Mitter, SK .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1998, 43 (01) :31-45
[7]  
Brasseur C, 2015, IEEE-RAS INT C HUMAN, P595, DOI 10.1109/HUMANOIDS.2015.7363423
[8]   Metastable Walking Machines [J].
Byl, Katie ;
Tedrake, Russ .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2009, 28 (08) :1040-1064
[9]  
Caron S, 2016, IEEE-RAS INT C HUMAN, P550, DOI 10.1109/HUMANOIDS.2016.7803329
[10]  
Carpentier J, 2016, IEEE INT CONF ROBOT, P3555, DOI 10.1109/ICRA.2016.7487538