Identification of the initial function for nonlinear delay differential equations

被引:3
作者
Baker, CTH [1 ]
Parmuzin, EI
机构
[1] Univ Victoria, Dept Math, Manchester M13 9PL, Lancs, England
[2] Russian Acad Sci, Inst Numer Math, Moscow 119991, Russia
关键词
D O I
10.1163/1569398053270831
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a 'data assimilation problem' for nonlinear delay differential equations. Our problem is to find an initial function that gives rise to a solution of a given nonlinear delay differential equation, which is a close fit to observed data. A role for adjoint equations and fundamental solutions in the nonlinear case is established. A 'pseudo-Newton' method is presented. Our results extend those given by the authors in [2, 5] for the case of linear delay differential equations.
引用
收藏
页码:45 / 66
页数:22
相关论文
共 9 条
[1]  
BAKER CTH, 2004, J INTEGRAL EQUAT, V16, P111
[2]  
BAKER CTH, 2004, 444 NA MCCM
[3]  
BAKER CTH, 2004, 430 NA MCCM
[4]  
BAKER CTH, 2004, 431 NA MCCM
[5]  
BAKER CTH, 2004, 443 NA MCCM
[6]   On Newton methods in data assimilation [J].
Le Dimet, FX ;
Shutyaev, VP .
RUSSIAN JOURNAL OF NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING, 2000, 15 (05) :419-434
[7]  
Liusternik L.A., 1961, ELEMENTS FUNCTIONAL
[8]  
Marchuk G.I., 1986, NUMERICAL METHODS TH, V2nd
[9]  
ORTEGA J., 1970, ITERATIVE SOLUTION N