Self-force and radiation reaction in general relativity

被引:263
作者
Barack, Leor [1 ]
Pound, Adam [1 ]
机构
[1] Univ Southampton, Math Sci, Southampton SO17 1BJ, Hants, England
关键词
gravitational self-force; black-hole binaries; gravitational waves; gravitational radiation reaction; GRAVITATIONAL-RADIATION; BLACK-HOLE; ADIABATIC EVOLUTION; KERR; MOTION; EQUATIONS; PARTICLE; DYNAMICS; ORBITS; FIELD;
D O I
10.1088/1361-6633/aae552
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The detection of gravitational waves from binary black-hole mergers by the LIGO-Virgo Collaboration marks the dawn of an era when general-relativistic dynamics in its most extreme manifestation is directly accessible to observation. In the future, planned (space-based) observatories operating in the millihertz band will detect the intricate gravitational-wave signals from the inspiral of compact objects into massive black holes residing in galactic centers. Such inspiral events are extremely effective probes of black-hole geometries, offering unparalleled precision tests of general relativity in its most extreme regime. This prospect has in the past two decades motivated a programme to obtain an accurate theoretical model of the strong-field radiative dynamics in a two-body system with a small mass ratio. The problem naturally lends itself to a perturbative treatment based on a systematic expansion of the field equations in the small mass ratio. At leading order one has a pointlike particle moving in a geodesic orbit around the large black hole. At subsequent orders, interaction of the particle with its own gravitational perturbation gives rise to an effective 'self-force', which drives the radiative evolution of the orbit, and whose effects can be accounted for order by order in the mass ratio. This review surveys the theory of gravitational self-force in curved spacetime and its application to the astrophysical inspiral problem. We first lay the relevant formal foundation, describing the rigorous derivation of the equation of self-forced motion using matched asymptotic expansions and other ideas. We then review the progress that has been achieved in numerically calculating the self-force and its physical effects in astrophysically realistic inspiral scenarios. We highlight the way in which, nowadays, self-force calculations make a fruitful contact with other approaches to the two-body problem and help inform an accurate universal model of binary black hole inspirals, valid across all mass ratios. We conclude with a summary of the state of the art, open problems and prospects. Our review is aimed at non-specialist readers and is for the most part self-contained and non-technical; only elementary-level acquaintance with general relativity is assumed. Where useful, we draw on analogies with familiar concepts from Newtonian gravity or classical electrodynamics.
引用
收藏
页数:46
相关论文
共 270 条
[1]   Observation of Gravitational Waves from a Binary Black Hole Merger [J].
Abbott, B. P. ;
Abbott, R. ;
Abbott, T. D. ;
Abernathy, M. R. ;
Acernese, F. ;
Ackley, K. ;
Adams, C. ;
Adams, T. ;
Addesso, P. ;
Adhikari, R. X. ;
Adya, V. B. ;
Affeldt, C. ;
Agathos, M. ;
Agatsuma, K. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Aiello, L. ;
Ain, A. ;
Ajith, P. ;
Allen, B. ;
Allocca, A. ;
Altin, P. A. ;
Anderson, S. B. ;
Anderson, W. G. ;
Arai, K. ;
Arain, M. A. ;
Araya, M. C. ;
Arceneaux, C. C. ;
Areeda, J. S. ;
Arnaud, N. ;
Arun, K. G. ;
Ascenzi, S. ;
Ashton, G. ;
Ast, M. ;
Aston, S. M. ;
Astone, P. ;
Aufmuth, P. ;
Aulbert, C. ;
Babak, S. ;
Bacon, P. ;
Bader, M. K. M. ;
Baker, P. T. ;
Baldaccini, F. ;
Ballardin, G. ;
Ballmer, S. W. ;
Barayoga, J. C. ;
Barclay, S. E. ;
Barish, B. C. ;
Barker, D. ;
Barone, F. .
PHYSICAL REVIEW LETTERS, 2016, 116 (06)
[2]   Effects of waveform model systematics on the interpretation of GW150914 [J].
Abbott, B. P. ;
Abbott, R. ;
Abbott, T. D. ;
Abernathy, M. R. ;
Acernese, F. ;
Ackley, K. ;
Adams, C. ;
Adams, T. ;
Addesso, P. ;
Adhikari, R. X. ;
Adya, V. B. ;
Affeldt, C. ;
Agathos, M. ;
Agatsuma, K. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Aiello, L. ;
Ain, A. ;
Ajith, P. ;
Allen, B. ;
Allocca, A. ;
Altin, P. A. ;
Ananyeva, A. ;
Anderson, S. B. ;
Anderson, W. G. ;
Appert, S. ;
Arai, K. ;
Araya, M. C. ;
Areeda, J. S. ;
Arnaud, N. ;
Arun, K. G. ;
Ascenzi, S. ;
Ashton, G. ;
Ast, M. ;
Aston, S. M. ;
Astone, P. ;
Aufmuth, P. ;
Aulbert, C. ;
Avila-Alvarez, A. ;
Babak, S. ;
Bacon, P. ;
Bader, M. K. M. ;
Baker, P. T. ;
Baldaccini, F. ;
Ballardin, G. ;
Ballmer, S. W. ;
Barayoga, J. C. ;
Barclay, S. E. ;
Barish, B. C. ;
Barker, D. .
CLASSICAL AND QUANTUM GRAVITY, 2017, 34 (10)
[3]   Self-force correction to geodetic spin precession in Kerr spacetime [J].
Akcay, Sarp .
PHYSICAL REVIEW D, 2017, 96 (04)
[4]   Spin-orbit precession for eccentric black hole binaries at first order in the mass ratio [J].
Akcay, Sarp ;
Dempsey, David ;
Dolan, Sam R. .
CLASSICAL AND QUANTUM GRAVITY, 2017, 34 (08)
[5]   Numerical computation of the effective-one-body potential q using self-force results [J].
Akcay, Sarp ;
van de Meent, Maarten .
PHYSICAL REVIEW D, 2016, 93 (06)
[6]   Comparison between self-force and post-Newtonian dynamics: Beyond circular orbits [J].
Akcay, Sarp ;
Le Tiec, Alexandre ;
Barack, Leor ;
Sago, Norichika ;
Warburton, Niels .
PHYSICAL REVIEW D, 2015, 91 (12)
[7]   Gravitational self-force and the effective-one-body formalism between the innermost stable circular orbit and the light ring [J].
Akcay, Sarp ;
Barack, Leor ;
Damour, Thibault ;
Sago, Norichika .
PHYSICAL REVIEW D, 2012, 86 (10)
[8]   All Local Gauge Invariants for Perturbations of the Kerr Spacetime [J].
Aksteiner, Steffen ;
Baeckdahl, Thomas .
PHYSICAL REVIEW LETTERS, 2018, 121 (05)
[9]   Research Update on Extreme-Mass-Ratio Inspirals [J].
Amaro-Seoane, Pau ;
Gair, Jonathan R. ;
Pound, Adam ;
Hughes, Scott A. ;
Sopuerta, Carlos F. .
10TH INTERNATIONAL LISA SYMPOSIUM, 2015, 610
[10]  
[Anonymous], SELF FORCE EFFECTS H