On a Generalization of Meyniel's Conjecture on the Cops and Robbers Game

被引:0
作者
Alon, Noga [1 ,2 ]
Mehrabian, Abbas [3 ]
机构
[1] Tel Aviv Univ, Tel Aviv, Israel
[2] Inst Adv Study, Princeton, NJ 08540 USA
[3] Univ Waterloo, Dept Combinator & Optimizat, Waterloo, ON N2L 3G1, Canada
关键词
GRAPHS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a variant of the Cops and Robbers game where the robber can move s edges at a time, and show that in this variant, the cop number of a connected graph on n vertices can be as large as Omega(n(s/s+1)).This improves the Omega(n(s-3/s-2)) lower bound of Frieze et al. [5], and extends the result of the second author [10], which establishes the above bound for s = 2,4
引用
收藏
页数:7
相关论文
共 14 条
[1]  
Alon N, 2008, PROBABILISTIC METHOD
[2]  
BOLLOBAS B, ARXIV08052709V1MATHC
[3]   Pursuing a fast robber on a graph [J].
Fomin, Fedor V. ;
Golovach, Petr A. ;
Kratochvil, Jan ;
Nisse, Nicolas ;
Suchan, Karol .
THEORETICAL COMPUTER SCIENCE, 2010, 411 (7-9) :1167-1181
[4]   COPS AND ROBBERS IN GRAPHS WITH LARGE GIRTH AND CAYLEY-GRAPHS [J].
FRANKL, P .
DISCRETE APPLIED MATHEMATICS, 1987, 17 (03) :301-305
[5]  
FRIEZE A, ARXIV10042482V1MATHC
[6]  
Hahn G., 2007, TATRA MOUNTAINS MATH, V36, P1
[7]  
LU L, 2009, MEYNIELS CONJE UNPUB
[8]   Chasing Robbers on Random Graphs: Zigzag Theorem [J].
Luczak, Tomasz ;
Pralat, Pawel .
RANDOM STRUCTURES & ALGORITHMS, 2010, 37 (04) :516-524
[9]  
Mac Williams F.J., 1997, THEORY ERROR CORRECT
[10]  
MEHRABIAN A, ARXIV10071734V1MATHC