Maximizing Laplacian spectral radius over trees with fixed diameter

被引:2
作者
Lal, A. K. [1 ]
Patra, K. L. [1 ]
机构
[1] Indian Inst Technol, Dept Math & Stat, Kanpur 208016, Uttar Pradesh, India
关键词
bipartite graph; tree; Laplacian spectral radius; diameter; center points;
D O I
10.1080/03081080600618738
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we consider the following problem: Of all trees on n vertices with diameter d ( both fixed) which tree achieves the maximal Laplacian spectral radius? We show that the maximal Laplacian spectral radius is obtained uniquely at Q(n)(c),d, where Q(n)(c),d is a tree obtained by taking a path P on d + 1 vertices and adding n - d - 1 pendant vertices to a center point of P.
引用
收藏
页码:457 / 461
页数:5
相关论文
共 4 条
[1]   THE LAPLACIAN SPECTRUM OF A GRAPH [J].
GRONE, R ;
MERRIS, R ;
SUNDER, VS .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1990, 11 (02) :218-238
[2]  
Harary F., 1972, Graph Theory
[3]  
MINC H, 1987, NONNEGATIVE MATRICES
[4]  
[袁西英 Yuan Xiying], 2004, [华东师范大学学报. 自然科学版, Journal of East China Normal University.Natural Science], P13