counting process;
EM algorithm;
generalized linear mixed models;
joint models;
multivariate failure times;
non-parametric likelihood;
profile likelihood;
proportional hazards;
random effects;
repeated measures;
semiparametric efficiency;
survival data;
transformation models;
D O I:
10.1111/j.1369-7412.2007.00606.x
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
Semiparametric regression models play a central role in formulating the effects of covariates on potentially censored failure times and in the joint modelling of incomplete repeated measures and failure times in longitudinal studies. The presence of infinite dimensional parameters poses considerable theoretical and computational challenges in the statistical analysis of such models. We present several classes of semiparametric regression models, which extend the existing models in important directions. We construct appropriate likelihood functions involving both finite dimensional and infinite dimensional parameters. The maximum likelihood estimators are consistent and asymptotically normal with efficient variances. We develop simple and stable numerical techniques to implement the corresponding inference procedures. Extensive simulation experiments demonstrate that the inferential and computational methods proposed perform well in practical settings. Applications to three medical studies yield important new insights. We conclude that there is no reason, theoretical or numerical, not to use maximum likelihood estimation for semiparametric regression models. We discuss several areas that need further research.
机构:
Hong Kong Baptist Univ, Beijing Normal Univ, United Int Coll, Zhuhai 519085, Peoples R ChinaHong Kong Baptist Univ, Beijing Normal Univ, United Int Coll, Zhuhai 519085, Peoples R China
Fang, Kai-Tai
Li, Gang
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Los Angeles, Sch Publ Hlth, Dept Biostat, Los Angeles, CA 90095 USAHong Kong Baptist Univ, Beijing Normal Univ, United Int Coll, Zhuhai 519085, Peoples R China
Li, Gang
Lu, Xuyang
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Los Angeles, Sch Publ Hlth, Dept Biostat, Los Angeles, CA 90095 USAHong Kong Baptist Univ, Beijing Normal Univ, United Int Coll, Zhuhai 519085, Peoples R China
Lu, Xuyang
Qin, Hong
论文数: 0引用数: 0
h-index: 0
机构:
Cent China Normal Univ, Dept Stat, Wuhan 430079, Peoples R ChinaHong Kong Baptist Univ, Beijing Normal Univ, United Int Coll, Zhuhai 519085, Peoples R China
机构:
Univ Missouri, Dept Stat, 146 Middlebush Hall, Columbia, MO 65211 USAUniv Missouri, Dept Stat, 146 Middlebush Hall, Columbia, MO 65211 USA
Zhou, Qingning
Hu, Tao
论文数: 0引用数: 0
h-index: 0
机构:
Capital Normal Univ, Sch Math Sci, Beijing, Peoples R China
Capital Normal Univ, BCMIIS, Beijing, Peoples R ChinaUniv Missouri, Dept Stat, 146 Middlebush Hall, Columbia, MO 65211 USA
Hu, Tao
Sun, Jianguo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Missouri, Dept Stat, 146 Middlebush Hall, Columbia, MO 65211 USAUniv Missouri, Dept Stat, 146 Middlebush Hall, Columbia, MO 65211 USA
机构:
Univ Iowa, Dept Biostat, Iowa City, IA 52242 USAUniv Iowa, Dept Biostat, Iowa City, IA 52242 USA
Zhang, Ying
Hua, Lei
论文数: 0引用数: 0
h-index: 0
机构:
Univ Iowa, Dept Biostat, Iowa City, IA 52242 USAUniv Iowa, Dept Biostat, Iowa City, IA 52242 USA
Hua, Lei
Huang, Jian
论文数: 0引用数: 0
h-index: 0
机构:
Univ Iowa, Dept Biostat, Iowa City, IA 52242 USA
Univ Iowa, Dept Stat & Actuarial Sci, Iowa City, IA 52242 USAUniv Iowa, Dept Biostat, Iowa City, IA 52242 USA