Detection of Epileptic Seizures From EEG Signals by Combining Dimensionality Reduction Algorithms With Machine Learning Models

被引:20
|
作者
Zubair, Muhammad [1 ]
Belykh, Maria Vladimirovna [2 ]
Naik, M. Umesh Kumar [1 ]
Gouher, Mohammad Fareeda Madeen [1 ]
Vishwakarma, Shani [3 ]
Ahamed, Shaik Rafi [3 ]
Kongara, Ramanjaneyulu [1 ]
机构
[1] Prasad Potluri Siddhartha Inst Technol, Dept Elect & Commun Engn, Vijayawada 520007, India
[2] Natl Res Univ Higher Sch Econ, Dept Appl Math, Moscow 101000, Russia
[3] IIT Guwahati, Dept Elect & Elect Engn, Gauhati 781039, India
关键词
Electroencephalography; Feature extraction; Discrete wavelet transforms; Epilepsy; Brain modeling; Dimensionality reduction; Time-frequency analysis; Epileptic seizures; discrete wavelet transform (DWT); sub-pattern PCA (SPPCA); cross sub-pattern correlation PCA (SUBXPCA); support vector machine (SVM); random forest; K-Nearest Neighbours (KNN); LightGBM; Catboost; Multilayer Perceptron (MLP); AUTOMATED DETECTION; WARNING SYSTEM; CLASSIFICATION; IDENTIFICATION; NETWORK; TRENDS; SVM;
D O I
10.1109/JSEN.2021.3077578
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Epilepsy is a neurological condition that affects the central nervous system. While its effects are different for each person, they mostly include abnormal behaviour, periods of loss of awareness and seizures. There are various traditional methods used to analyse EEG signals for epilepsy detection, which concludes to be time-consuming. Recently, several automated seizure detection frameworks using machine learning algorithms have been proposed to replace conventional methods. In this paper, more emphasis has been given to develop SPPCA and SUBXPCA dimensionality reduction algorithms to increase the classification accuracy of various machine learning models. Firstly, Discrete Wavelet Transform (DWT) is applied to EEG signals for extracting the time-frequency domain features of epileptic seizures such as the energy of each sub-pattern, spike rhythmicity, Relative Spike Amplitude (RSA), Dominant Frequency (DF) and Spectral Entropy (SE). The features obtained after performing DWT on an EEG signal are extensive in number, to select the prominent features and to retain their properties, correlation feature sub-pattern-based PCA (SPPCA), and cross sub-pattern correlation-based PCA (SUBXPCA) are used as a dimensionality reduction techniques. To validate the proposed work, performance evaluation parameter such as the accuracy of the time-frequency domain features from different combinations of the dataset has been compared with the latest state-of-the-art works. Simulation results show that the best accuracy of 97% is achieved for SPPCA algorithm by CatBoost classifier. And the best accuracy of 98% for SUBXPCA is achieved by random forest classifier, which clearly outperformed the other related works both in terms of accuracy and computational complexity.
引用
收藏
页码:16861 / 16869
页数:9
相关论文
共 50 条
  • [41] EPILEPTIC EEG SIGNALS RHYTHMS ANALYSIS IN THE DETECTION OF FOCAL AND NON-FOCAL SEIZURES BASED ON OPTIMISED MACHINE LEARNING AND DEEP NEURAL NETWORK ARCHITECTURE
    Saminu, Sani
    Xu, Guizhi
    Shuai, Zhang
    El Kader, Isselmou abd
    Jabire, Adamu halilu
    Ahmed, Yusuf kola
    Karaye, Ibrahim abdullahi
    Ahmad, Isah salim
    JOURNAL OF MECHANICS IN MEDICINE AND BIOLOGY, 2024, 24 (01)
  • [42] Machine learning models and dimensionality reduction for improving the Android malware detection
    Moran, Pablo
    Robles-Gomez, Antonio
    Duque, Andres
    Tobarra, Llanos
    Pastor-Vargas, Rafael
    PEERJ COMPUTER SCIENCE, 2024, 10
  • [43] An Interpretable Machine Learning Method for the Detection of Schizophrenia Using EEG Signals
    Vazquez, Manuel A.
    Maghsoudi, Arash
    Marino, Ines P.
    FRONTIERS IN SYSTEMS NEUROSCIENCE, 2021, 15
  • [44] Early Detection of Stress and Anxiety Based Seizures in Position Data Augmented EEG Signal Using Hybrid Deep Learning Algorithms
    Kamakshi, Kamini
    Rengaraj, Arthi
    IEEE ACCESS, 2024, 12 : 35351 - 35365
  • [45] A systematic review of deep learning algorithms utilising electroencephalography signals for epileptic seizure detection
    Choudhary, Sunil Kumar
    Bera, Tushar Kanti
    INTERNATIONAL JOURNAL OF BIOMEDICAL ENGINEERING AND TECHNOLOGY, 2024, 46 (03) : 228 - 262
  • [46] Differentiating Epileptic and Psychogenic Non-Epileptic Seizures Using Machine Learning Analysis of EEG Plot Images
    Fussner, Steven
    Boyne, Aidan
    Han, Albert
    Nakhleh, Lauren A.
    Haneef, Zulfi
    SENSORS, 2024, 24 (09)
  • [47] Detection of epileptic seizures from compressively sensed EEG signals for wireless body area networks
    Aghababaei, Mohammad H.
    Azemi, Ghasem
    O'Toole, John M.
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 172
  • [48] Evaluation of Machine Learning Algorithms for Classification of EEG Signals
    Javier Ramirez-Arias, Francisco
    Efren Garcia-Guerrero, Enrique
    Tlelo-Cuautle, Esteban
    Miguel Colores-Vargas, Juan
    Garcia-Canseco, Eloisa
    Roberto Lopez-Bonilla, Oscar
    Manuel Galindo-Aldana, Gilberto
    Inzunza-Gonzalez, Everardo
    TECHNOLOGIES, 2022, 10 (04)
  • [49] Detection of Epileptic Seizures Using Wavelet Transform, Peak Extraction and PSR from EEG Signals
    Jang, Seok-Woo
    Lee, Sang-Hong
    SYMMETRY-BASEL, 2020, 12 (08):
  • [50] Automatic Identification of Epileptic Seizures From EEG Signals Using Sparse Representation-Based Classification
    Sheykhivand, Sobhan
    Rezaii, Tohid Yousefi
    Mousavi, Zohreh
    Delpak, Azra
    Farzamnia, Ali
    IEEE ACCESS, 2020, 8 : 138834 - 138845