Congruences for (3,11)-regular bipartitions modulo 11

被引:10
作者
Dou, Donna Q. J. [1 ]
机构
[1] Jilin Univ, Sch Math, Changchun 130012, Jilin, Peoples R China
基金
中国国家自然科学基金;
关键词
(k; l)-Regular bipartition; Cubic theta functions; Congruence; REGULAR PARTITION-FUNCTIONS; EVEN PARTS DISTINCT; 9-REGULAR PARTITIONS; ARITHMETIC PROPERTIES; OVERPARTITION PAIRS; KEITHS CONJECTURE; DIVISIBILITY; IDENTITIES; RAMANUJAN; NUMBER;
D O I
10.1007/s11139-015-9732-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note we investigate the function , which counts the number of -regular bipartitions of n. We shall prove an infinite family of congruences modulo 11: for alpha >= 2 and n >= 0, B-3,B-11 (3(alpha)n + 5.3(alpha-1) - 1/2) equivalent to 0 (mod 11).
引用
收藏
页码:535 / 540
页数:6
相关论文
共 33 条
[31]   A PROOF OF KEITH'S CONJECTURE FOR 9-REGULAR PARTITIONS MODULO 3 [J].
Xia, Ernest X. W. ;
Yao, Olivia X. M. .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2014, 10 (03) :669-674
[32]   New congruences modulo powers of 2 and 3 for 9-regular partitions [J].
Yao, Olivia X. M. .
JOURNAL OF NUMBER THEORY, 2014, 142 :89-101
[33]  
[No title captured]