Congruences for (3,11)-regular bipartitions modulo 11

被引:10
作者
Dou, Donna Q. J. [1 ]
机构
[1] Jilin Univ, Sch Math, Changchun 130012, Jilin, Peoples R China
基金
中国国家自然科学基金;
关键词
(k; l)-Regular bipartition; Cubic theta functions; Congruence; REGULAR PARTITION-FUNCTIONS; EVEN PARTS DISTINCT; 9-REGULAR PARTITIONS; ARITHMETIC PROPERTIES; OVERPARTITION PAIRS; KEITHS CONJECTURE; DIVISIBILITY; IDENTITIES; RAMANUJAN; NUMBER;
D O I
10.1007/s11139-015-9732-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note we investigate the function , which counts the number of -regular bipartitions of n. We shall prove an infinite family of congruences modulo 11: for alpha >= 2 and n >= 0, B-3,B-11 (3(alpha)n + 5.3(alpha-1) - 1/2) equivalent to 0 (mod 11).
引用
收藏
页码:535 / 540
页数:6
相关论文
共 33 条
[1]   The arithmetic of partitions into distinct parts [J].
Ahlgren, S ;
Lovejoy, J .
MATHEMATIKA, 2001, 48 (95-96) :203-211
[2]   Arithmetic properties of partitions with even parts distinct [J].
Andrews, George E. ;
Hirschhorn, Michael D. ;
Sellers, James A. .
RAMANUJAN JOURNAL, 2010, 23 (1-3) :169-181
[3]   SOME CUBIC MODULAR IDENTITIES OF RAMANUJAN [J].
BORWEIN, JM ;
BORWEIN, PB ;
GARVAN, FG .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 343 (01) :35-47
[4]   Rank and congruences for overpartition pairs [J].
Bringmann, Kathrin ;
Lovejoy, Jeremy .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2008, 4 (02) :303-322
[5]   Infinite families of infinite families of congruences for k-regular partitions [J].
Carlson, Rowland ;
Webb, John J. .
RAMANUJAN JOURNAL, 2014, 33 (03) :329-337
[6]   RAMANUJAN'S CUBIC CONTINUED FRACTION AND AN ANALOG OF HIS "MOST BEAUTIFUL IDENTITY" [J].
Chan, Hei-Chi .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2010, 6 (03) :673-680
[7]   Pairs of partitions without repeated odd parts [J].
Chan, Song Heng ;
Mao, Renrong .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 394 (01) :408-415
[8]   Arithmetic properties of overpartition pairs [J].
Chen, William Y. C. ;
Lin, Bernard L. S. .
ACTA ARITHMETICA, 2012, 151 (03) :263-277
[9]   Congruences for bipartitions with odd parts distinct [J].
Chen, William Y. C. ;
Lin, Bernard L. S. .
RAMANUJAN JOURNAL, 2011, 25 (02) :277-293
[10]   Congruences for 9-regular partitions modulo 3 [J].
Cui, Su-Ping ;
Gu, Nancy S. S. .
RAMANUJAN JOURNAL, 2015, 38 (03) :503-512