Pt supported on alumina is an essential component of emission treatment catalysts used in transportation. Theoretical, experimental, and mechanistic aspects of Pt particles supported on a variety of supports have been studied extensively; however, available experimental information on the behavior of single versus sub-nanometer Pt is extremely limited. To bridge the knowledge gap between single supported Pt and well-formed supported Pt nanoparticles, we have performed the synthesis, characterization, and CO and NO oxidation studies of sub-nanometer Pt supported on -, -, and -Al2O3 and monitored the changes in structure upon exposure to CO and NO oxidation conditions. We find that sub-nanometer Pt is highly effective for CO oxidation because of the high Pt dispersion, but it is not very efficient as a NO oxidation catalyst. Furthermore, sub-nanometer Pt agglomerates rapidly under CO or NO oxidation conditions to form nanoparticles.