Cellular automaton simulation of dynamic recrystallization behavior in V-10Cr-5Ti alloy under hot deformation conditions

被引:24
作者
Cao, Zhuo-han [1 ]
Sun, Yu [1 ]
Zhou, Chen [1 ]
Wan, Zhi-peng [1 ]
Yang, Wen-hua [2 ]
Ren, Li-li [3 ]
Hu, Lian-xi [1 ]
机构
[1] Harbin Inst Technol, Natl Key Lab Precis Hot Proc Met, Harbin 150001, Heilongjiang, Peoples R China
[2] China Acad Engn Phys, Inst Machinery Mfg Technol, Mianyang 621900, Peoples R China
[3] China Nucl Ind 23 Construct Co Ltd, Beijing 101300, Peoples R China
基金
中国国家自然科学基金;
关键词
V-10Cr-5Ti alloy; hot deformation; dynamic recrystallization; cellular automaton; microstructure; numerical simulation; grain refinement; NI-BASED SUPERALLOY; MICROSTRUCTURAL EVOLUTION; CONSTITUTIVE MODEL; CRYSTAL PLASTICITY; V-5CR-5TI ALLOY; VANADIUM ALLOYS; PARAMETERS; KINETICS; FLOW;
D O I
10.1016/S1003-6326(18)64919-2
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
The deformation behavior of V-10Cr-5Ti alloy was studied on the Gleeble-1500 thermomechanical simulator at the temperatures of 950-1350 degrees C, and the strain rates of 0.01-10 s(-1). Based on the Arrhenius model, dislocation density model, nucleation model and grain growth model, a numerical cellular automaton (CA) model coupling simulation of hot deformation is established to simulate and characterize the microstructural evolution during DRX. The results show that the flow stress is fairly sensitive to the strain rate and deformation temperature. The error between the predicted stress by the Arrhenius model and the actual measured value is less than 8%. The initial average grain size calculated by the CA model is 86.25 mu m, which is close to the experimental result (85.63 mu m). The simulations show that the effect of initial grain size on the dynamic recrystallization microstructure evolution is not significant, while increasing the strain rate or reducing the temperature can refine the recrystallized grains.
引用
收藏
页码:98 / 111
页数:14
相关论文
共 29 条
[1]  
Alireza H, 2017, MAT SCI ENG A, V681, P103
[2]   Strain-rate sensitivity and fracture mode of V-5Cr-5Ti alloy [J].
Cai, M. C. ;
Zhang, J. T. ;
Niu, L. S. ;
Shi, H. J. .
SCRIPTA MATERIALIA, 2010, 62 (07) :524-527
[3]   A new method to establish dynamic recrystallization kinetics model of a typical solution-treated Ni-based superalloy [J].
Chen, Ming-Song ;
Lin, Y. C. ;
Li, Kuo-Kuo ;
Zhou, Ying .
COMPUTATIONAL MATERIALS SCIENCE, 2016, 122 :150-158
[4]   Coupled quantitative simulation of microstructural evolution and plastic flow during dynamic recrystallization [J].
Ding, R ;
Guo, ZX .
ACTA MATERIALIA, 2001, 49 (16) :3163-3175
[5]   A physically based constitutive model for a V-4Cr-4Ti alloy [J].
Donahue, EG ;
Odette, GR ;
Lucas, GE .
JOURNAL OF NUCLEAR MATERIALS, 2000, 283 (PART I) :637-641
[6]   Alloy design and microstructural evolution in V-Ti-Cr alloys [J].
Ghosh, Chanchal ;
Basu, Joysurya ;
Ramachandran, Divakar ;
Mohandas, E. .
MATERIALS CHARACTERIZATION, 2015, 106 :292-301
[7]   Modeling dynamic recrystallization using cellular automata [J].
Goetz, RL ;
Seetharaman, V .
SCRIPTA MATERIALIA, 1998, 38 (03) :405-413
[8]   Simulation of discontinuous dynamic recrystallization in pure Cu using a probabilistic cellular automaton [J].
Hallberg, Hakan ;
Wallin, Mathias ;
Ristinmaa, Matti .
COMPUTATIONAL MATERIALS SCIENCE, 2010, 49 (01) :25-34
[9]   Investigation on dynamic recrystallization using a modified cellular automaton [J].
Jin, Zhaoyang ;
Cui, Zhenshan .
COMPUTATIONAL MATERIALS SCIENCE, 2012, 63 :249-255
[10]   Modeling the dynamic recrystallization under multi-stage hot deformation [J].
Kugler, G ;
Turk, R .
ACTA MATERIALIA, 2004, 52 (15) :4659-4668