Mapping Hawking into Unruh thermal properties

被引:115
作者
Deser, S [1 ]
Levin, O [1 ]
机构
[1] Brandeis Univ, Dept Phys, Waltham, MA 02454 USA
关键词
D O I
10.1103/PhysRevD.59.064004
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
By globally embedding curved spaces into higher dimensional flat ones, we show that Hawking thermal properties map into their Unruh equivalents: The relevant curved space detectors become Rindler ones, whose temperature and entropy reproduce the originals. Specific illustrations include Schwaraschild, Schwarzschild-(anti-)de Sitter, Reissner-Nordstrom, and Banados-Teitelboim-Zanelli spaces. [S0556-2821(99)07004-6].
引用
收藏
页数:7
相关论文
共 21 条
[1]   BLACK-HOLE IN 3-DIMENSIONAL SPACETIME [J].
BANADOS, M ;
TEITELBOIM, C ;
ZANELLI, J .
PHYSICAL REVIEW LETTERS, 1992, 69 (13) :1849-1851
[2]   GEOMETRY OF THE 2+1 BLACK-HOLE [J].
BANADOS, M ;
HENNEAUX, M ;
TEITELBOIM, C ;
ZANELLI, J .
PHYSICAL REVIEW D, 1993, 48 (04) :1506-1525
[3]   BLACK HOLES AND ENTROPY [J].
BEKENSTEIN, JD .
PHYSICAL REVIEW D, 1973, 7 (08) :2333-2346
[4]   TEMPERATURE, ENERGY, AND HEAT-CAPACITY OF ASYMPTOTICALLY ANTI-DE SITTER BLACK-HOLES [J].
BROWN, JD ;
CREIGHTON, J ;
MANN, RB .
PHYSICAL REVIEW D, 1994, 50 (10) :6394-6403
[5]   The (2+1)-dimensional black hole [J].
Carlip, S .
CLASSICAL AND QUANTUM GRAVITY, 1995, 12 (12) :2853-2879
[6]   Accelerated detectors and temperature in (anti-) de Sitter spaces [J].
Deser, S ;
Levin, O .
CLASSICAL AND QUANTUM GRAVITY, 1997, 14 (09) :L163-L168
[7]   Equivalence of Hawking and Unruh temperatures and entropies through flat space embeddings [J].
Deser, S ;
Levin, O .
CLASSICAL AND QUANTUM GRAVITY, 1998, 15 (12) :L85-L87
[8]   COMPLETION AND EMBEDDING OF THE SCHWARZSCHILD SOLUTION [J].
FRONSDAL, C .
PHYSICAL REVIEW, 1959, 116 (03) :778-781
[9]   ACTION INTEGRALS AND PARTITION-FUNCTIONS IN QUANTUM GRAVITY [J].
GIBBONS, GW ;
HAWKING, SW .
PHYSICAL REVIEW D, 1977, 15 (10) :2752-2756
[10]   COSMOLOGICAL EVENT HORIZONS, THERMODYNAMICS, AND PARTICLE CREATION [J].
GIBBONS, GW ;
HAWKING, SW .
PHYSICAL REVIEW D, 1977, 15 (10) :2738-2751