A New Rainfall-Runoff Model Using Improved LSTM with Attentive Long and Short Lag-Time

被引:11
作者
Chen, Xi [1 ,2 ,3 ]
Huang, Jiaxu [1 ,2 ,3 ]
Wang, Sheng [1 ,2 ]
Zhou, Gongjian [4 ]
Gao, Hongkai [1 ,2 ]
Liu, Min [1 ,2 ]
Yuan, Ye [5 ,6 ]
Zheng, Laiwen [6 ]
Li, Qingli [7 ]
Qi, Honggang [8 ]
机构
[1] East China Normal Univ, Minist Educ China, Key Lab Geog Informat Sci, Shanghai 200241, Peoples R China
[2] East China Normal Univ, Sch Geog Sci, Shanghai 200241, Peoples R China
[3] East China Normal Univ, Shanghai Key Lab Multidimens Informat Proc, Shanghai 200241, Peoples R China
[4] Hangzhou Normal Univ, Affiliated High Sch, Hangzhou 310030, Peoples R China
[5] Harbin Inst Technol, Key Lab Marine Environm Monitoring & Informat Pro, Sch Elect & Informat Engn, Minist Ind & Informat Technol, Harbin 150001, Peoples R China
[6] Shanghai Jiao Tong Univ, Dept Automat, Shanghai 200240, Peoples R China
[7] Huanghuai Univ, Henan Key Lab Smart Lighting, Zhumadian 463000, Peoples R China
[8] Univ Chinese Acad Sci, Sch Comp Sci & Technol, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
runoff forecasting; self-attention; time series; deep learning; rainfall-runoff modeling; ANN; MACHINE;
D O I
10.3390/w14050697
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
It is important to improve the forecasting performance of rainfall-runoff models due to the high complexity of basin response and frequent data limitations. Recently, many studies have been carried out based on deep learning and have achieved significant performance improvements. However, their intrinsic characteristics remain unclear and have not been explored. In this paper, we pioneered the exploitation of short lag-times in rainfall-runoff modeling and measured its influence on model performance. The proposed model, long short-term memory with attentive long and short lag-time (LSTM-ALSL), simultaneously and explicitly uses new data structures, i.e., long and short lag-times, to enhance rainfall-runoff forecasting accuracy by jointly extracting better features. In addition, self-attention is employed to model the temporal dependencies within long and short lag-times to further enhance the model performance. The results indicate that LSTM-ALSL yielded superior performance at four mesoscale stations (1846~9208 km(2)) with humid climates (aridity index 0.77~1.16) in the U.S.A., for both peak flow and base flow, with respect to state-of-the-art counterparts.
引用
收藏
页数:19
相关论文
共 47 条
[1]   A new approach for simulating and forecasting the rainfall-runoff process within the next two months [J].
Alizadeh, Mohamad Javad ;
Kavianpour, Mohamad Reza ;
Kisi, Ozgur ;
Nourani, Vahid .
JOURNAL OF HYDROLOGY, 2017, 548 :588-597
[2]  
Anctil F, 2004, J ENVIRON ENG SCI, V3, pS121, DOI [10.1139/s03-071, 10.1139/S03-071]
[3]  
Bahdanau D., 2014, ARXIV140904730
[4]   Advancing tracer-aided rainfall-runoff modelling: a review of progress, problems and unrealised potential [J].
Birkel, Christian ;
Soulsby, Chris .
HYDROLOGICAL PROCESSES, 2015, 29 (25) :5227-5240
[5]   Changing climate both increases and decreases European river floods [J].
Bloeschl, Guenter ;
Hall, Julia ;
Viglione, Alberto ;
Perdigao, Rui A. P. ;
Parajka, Juraj ;
Merz, Bruno ;
Lun, David ;
Arheimer, Berit ;
Aronica, Giuseppe T. ;
Bilibashi, Ardian ;
Bohac, Milon ;
Bonacci, Ognjen ;
Borga, Marco ;
Canjevac, Ivan ;
Castellarin, Attilio ;
Chirico, Giovanni B. ;
Claps, Pierluigi ;
Frolova, Natalia ;
Ganora, Daniele ;
Gorbachova, Liudmyla ;
Gul, Ali ;
Hannaford, Jamie ;
Harrigan, Shaun ;
Kireeva, Maria ;
Kiss, Andrea ;
Kjeldsen, Thomas R. ;
Kohnova, Silvia ;
Koskela, Jarkko J. ;
Ledvinka, Ondrej ;
Macdonald, Neil ;
Mavrova-Guirguinova, Maria ;
Mediero, Luis ;
Merz, Ralf ;
Molnar, Peter ;
Montanari, Alberto ;
Murphy, Conor ;
Osuch, Marzena ;
Ovcharuk, Valeryia ;
Radevski, Ivan ;
Salinas, Jose L. ;
Sauquet, Eric ;
Sraj, Mojca ;
Szolgay, Jan ;
Volpi, Elena ;
Wilson, Donna ;
Zaimi, Klodian ;
Zivkovic, Nenad .
NATURE, 2019, 573 (7772) :108-+
[6]  
Bradley A. A., 2019, HDB HYDROMETEOROLOGI, P849, DOI [10.1007/978-3-642-39925-1_2, DOI 10.1007/978-3-642-39925-1, 10.1007/978-3-642-39925-1]
[7]   Neural networks and non-parametric methods for improving real-time flood forecasting through conceptual hydrological models [J].
Brath, A ;
Montanari, A ;
Toth, E .
HYDROLOGY AND EARTH SYSTEM SCIENCES, 2002, 6 (04) :627-639
[8]   Hydrologically Informed Machine Learning for Rainfall-Runoff Modeling: A Genetic Programming-Based Toolkit for Automatic Model Induction [J].
Chadalawada, Jayashree ;
Herath, H. M. V. V. ;
Babovic, Vladan .
WATER RESOURCES RESEARCH, 2020, 56 (04)
[9]   The importance of short lag-time in the runoff forecasting model based on long short-term memory [J].
Chen, Xi ;
Huang, Jiaxu ;
Han, Zhen ;
Gao, Hongkai ;
Liu, Min ;
Li, Zhiqiang ;
Liu, Xiaoping ;
Li, Qingli ;
Qi, Honggang ;
Huang, Yonggui .
JOURNAL OF HYDROLOGY, 2020, 589
[10]  
Cisty M., 2018, MACHINE LEARNING DAT, P369