Integrative In Silico Analysis of Genome-Wide DNA Methylation Profiles in Schizophrenia

被引:9
作者
Forero, Diego A. [1 ]
Gonzalez-Giraldo, Yeimy [2 ]
机构
[1] Fdn Univ Area Andina, Sch Hlth & Sport Sci, Bogota, Colombia
[2] Univ Antonio Narino, Sch Psychosocial Therapies, Ctr Psychosocial Studies Latin Amer & Caribbean, Bogota, Colombia
关键词
Epigenomics; DNA methylation; Psychiatric genomics; Computational biology; Schizophrenia; CONVERGENT FUNCTIONAL GENOMICS; GENETIC RISK; MICROARRAY; EXPRESSION;
D O I
10.1007/s12031-020-01585-w
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Schizophrenia (SZ) is a complex and severe psychiatric disorder, which has a global lifetime prevalence of 0.4% and a heritability of around 0.81. A number of epigenome-wide association studies (EWAS) have been carried out for SZ, with discordant results. The main aim of this study was to carry out an integrative in silico analysis of available genome-wide DNA methylation profiles in schizophrenia. In this work, an integration of multiple lines of evidence (top candidate genes from several EWAS and genome-wide expression and association data) was carried out, in order to identify top differentially methylated (DM) genes for SZ. In addition, functional enrichment and protein-protein interaction analyses were carried out. Several top differentially methylated genes, such as APC, CACNB2, and PRKN, were found, and an enrichment of binding sites for brain-expressed transcription factors, such as FOXO1, MYB, and ZIC3, was also observed. Moreover, a protein-protein interaction network showed a central role for DISC1 and ZNF688 genes, and experimentally validated targets of MIR-137, such as and KCNB2, NRXN1, and SYN2, were identified among DM genes. This is the first integrative in silico analysis of available genome-wide DNA methylation profiles in schizophrenia. This work identified novel candidate genes and pathways for SZ and provides the basis to explore their role in the pathogenesis of SZ in future studies.
引用
收藏
页码:1887 / 1893
页数:7
相关论文
共 40 条
[1]   Aberrant transcriptomes and DNA methylomes define pathways that drive pathogenesis and loss of brain laterality/asymmetry in schizophrenia and bipolar disorder [J].
Abdolmaleky, Hamid M. ;
Gower, Adam C. ;
Wong, Chen-Khuan ;
Cox, Jiayi W. ;
Zhang, Xiaoling ;
Thiagalingam, Arunthathi ;
Shafa, Rahim ;
Sivaraman, Vadivelu ;
Zhou, Jin-Rong ;
Thiagalingam, Sam .
AMERICAN JOURNAL OF MEDICAL GENETICS PART B-NEUROPSYCHIATRIC GENETICS, 2019, 180 (02) :138-149
[2]   Case-control meta-analysis of blood DNA methylation and autism spectrum disorder [J].
Andrews, Shan V. ;
Sheppard, Brooke ;
Windham, Gayle C. ;
Schieve, Laura A. ;
Schendel, Diana E. ;
Croen, Lisa A. ;
Chopra, Pankaj ;
Alisch, Reid S. ;
Newschaffer, Craig J. ;
Warren, Stephen T. ;
Feinberg, Andrew P. ;
Fallin, M. Daniele ;
Ladd-Acosta, Christine .
MOLECULAR AUTISM, 2018, 9
[3]   Convergent functional genomics of schizophrenia: from comprehensive understanding to genetic risk prediction [J].
Ayalew, M. ;
Le-Niculescu, H. ;
Levey, D. F. ;
Jain, N. ;
Changala, B. ;
Patel, S. D. ;
Winiger, E. ;
Breier, A. ;
Shekhar, A. ;
Amdur, R. ;
Koller, D. ;
Nurnberger, J. I. ;
Corvin, A. ;
Geyer, M. ;
Tsuang, M. T. ;
Salomon, D. ;
Schork, N. J. ;
Fanous, A. H. ;
O'Donovan, M. C. ;
Niculescu, A. B. .
MOLECULAR PSYCHIATRY, 2012, 17 (09) :887-905
[4]   NCBI GEO: archive for functional genomics data sets-update [J].
Barrett, Tanya ;
Wilhite, Stephen E. ;
Ledoux, Pierre ;
Evangelista, Carlos ;
Kim, Irene F. ;
Tomashevsky, Maxim ;
Marshall, Kimberly A. ;
Phillippy, Katherine H. ;
Sherman, Patti M. ;
Holko, Michelle ;
Yefanov, Andrey ;
Lee, Hyeseung ;
Zhang, Naigong ;
Robertson, Cynthia L. ;
Serova, Nadezhda ;
Davis, Sean ;
Soboleva, Alexandra .
NUCLEIC ACIDS RESEARCH, 2013, 41 (D1) :D991-D995
[5]   Genome-wide DNA methylation profiling using Infinium® assay [J].
Bibikova, Marina ;
Le, Jennie ;
Barnes, Bret ;
Saedinia-Melnyk, Shadi ;
Zhou, Lixin ;
Shen, Richard ;
Gunderson, Kevin L. .
EPIGENOMICS, 2009, 1 (01) :177-200
[6]   Minimum information about a microarray experiment (MIAME) - toward standards for microarray data [J].
Brazma, A ;
Hingamp, P ;
Quackenbush, J ;
Sherlock, G ;
Spellman, P ;
Stoeckert, C ;
Aach, J ;
Ansorge, W ;
Ball, CA ;
Causton, HC ;
Gaasterland, T ;
Glenisson, P ;
Holstege, FCP ;
Kim, IF ;
Markowitz, V ;
Matese, JC ;
Parkinson, H ;
Robinson, A ;
Sarkans, U ;
Schulze-Kremer, S ;
Stewart, J ;
Taylor, R ;
Vilo, J ;
Vingron, M .
NATURE GENETICS, 2001, 29 (04) :365-371
[7]   Correlation between DNA methylation and gene expression in the brains of patients with bipolar disorder and schizophrenia [J].
Chen, Chao ;
Zhang, Chunling ;
Cheng, Lijun ;
Reilly, James L. ;
Bishop, Jeffrey R. ;
Sweeney, John A. ;
Chen, Hua-Yun ;
Gershon, Elliot S. ;
Liu, Chunyu .
BIPOLAR DISORDERS, 2014, 16 (08) :790-799
[8]   Putative psychosis genes in the prefrontal cortex: combined analysis of gene expression microarrays [J].
Choi, Kwang Ho ;
Elashoff, Michael ;
Higgs, Brandon W. ;
Song, Jonathan ;
Kim, Sanghyeon ;
Sabunciyan, Sarven ;
Diglisic, Suad ;
Yolken, Robert H. ;
Knable, Michael B. ;
Torrey, E. Fuller ;
Webster, Maree J. .
BMC PSYCHIATRY, 2008, 8 (1)
[9]   Available Software for Meta-analyses of Genome-wide Expression Studies [J].
Forero, Diego A. .
CURRENT GENOMICS, 2019, 20 (05) :325-331
[10]   Convergent functional genomics of cocaine misuse in humans and animal models [J].
Forero, Diego A. ;
Gonzalez-Giraldo, Yeimy .
AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE, 2020, 46 (01) :22-30