Targeted Nanoswitchable Inhibitors of Protein-Protein Interactions Involved in Apoptosis

被引:4
作者
Nevola, Laura [1 ]
Varese, Monica [1 ]
Martin-Quiros, Andres [2 ]
Mari, Giacomo [1 ,3 ]
Eckelt, Kay [2 ,4 ]
Gorostiza, Pau [1 ,2 ,4 ,5 ]
Giralt, Ernest [1 ,6 ]
机构
[1] BIST, Inst Res Biomed IRB Barcelona, Baldiri Reixac 10, Barcelona 08028, Spain
[2] Inst Bioengn Catalonia IBEC, Barcelona 08028, Spain
[3] Univ Bologna, I-40126 Bologna, Italy
[4] Network Biomed Res Ctr Bioengn Biomat & Nanomed C, Madrid 28029, Spain
[5] Catalan Inst Res & Adv Studies ICREA, Barcelona 08010, Spain
[6] UB, Barcelona 080280, Spain
关键词
helical structures; optopharmacology; peptide engineering; photoswitchable peptides; protein-protein interactions; PHOTO-CONTROL; CROSS-LINKER; P53; PEPTIDE; CANCER; PHOTOCONTROL; LIMITATIONS; AZOBENZENE;
D O I
10.1002/cmdc.201800647
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Progress in drug delivery is hampered by a lack of efficient strategies to target drugs with high specificity and precise spatiotemporal regulation. The remote control of nanoparticles and drugs with light allows regulation of their action site and dosage. Peptide-based drugs are highly specific, non-immunogenic, and can be designed to cross the plasma membrane. In order to combine target specificity and remote control of drug action, here we describe a versatile strategy based on a generalized template to design nanoswitchable peptides that modulate protein-protein interactions upon light activation. This approach is demonstrated to promote photomodulation of two important targets involved in apoptosis (the interactions Bcl-xL-Bak and MDM2-p53), but can be also applied to a large pool of therapeutically relevant protein-protein interactions mediated by alpha-helical motifs. The template can be adjusted using readily available information about hot spots (residues contributing most to the binding energy) at the protein-protein interface of interest.
引用
收藏
页码:100 / 106
页数:7
相关论文
共 50 条
[41]   Analyzing protein-protein interactions by quantitative mass spectrometry [J].
Paul, Florian E. ;
Hosp, Fabian ;
Selbach, Matthias .
METHODS, 2011, 54 (04) :387-395
[42]   A Review of Stapled Peptides and Small Molecules to Inhibit Protein-Protein Interactions in Cancer [J].
Iyer, Vidhya V. .
CURRENT MEDICINAL CHEMISTRY, 2016, 23 (27) :3025-3043
[43]   Protein-Protein Interactions in Candida albicans [J].
Schoeters, Floris ;
Van Dijck, Patrick .
FRONTIERS IN MICROBIOLOGY, 2019, 10
[44]   Protein-protein interactions in a crowded environment [J].
Bhattacharya A. ;
Kim Y.C. ;
Mittal J. .
Biophysical Reviews, 2013, 5 (2) :99-108
[45]   Protein-Protein Interactions in Translesion Synthesis [J].
Dash, Radha Charan ;
Hadden, Kyle .
MOLECULES, 2021, 26 (18)
[46]   Decoding Protein-protein Interactions: An Overview [J].
Slater, Olivia ;
Miller, Bethany ;
Kontoyianni, Maria .
CURRENT TOPICS IN MEDICINAL CHEMISTRY, 2020, 20 (10) :855-882
[47]   Protein-protein interactions in multienzyme megasynthetases [J].
Weissman, Kira J. ;
Mueller, Rolf .
CHEMBIOCHEM, 2008, 9 (06) :826-848
[48]   Metals coordinate protein-protein interactions [J].
Kerman, Kagan ;
Kraatz, Heinz-Bernhard .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (35) :6522-6524
[49]   Molecular basis for protein-protein interactions [J].
Seychell, Brandon Charles ;
Beck, Tobias .
BEILSTEIN JOURNAL OF ORGANIC CHEMISTRY, 2021, 17 :1-10
[50]   The study of protein-protein interactions in bacteria [J].
Velasco-Garcia, Roberto ;
Vargas-Martinez, Roco .
CANADIAN JOURNAL OF MICROBIOLOGY, 2012, 58 (11) :1241-1257