Expansion of the phosphatidylethanolamine binding protein family in legumes: a case study of Lupinus angustifolius L. FLOWERING LOCUS T homologs, LanFTc1 and LanFTc2

被引:24
|
作者
Ksiazkiewicz, Michal [1 ]
Rychel, Sandra [1 ]
Nelson, Matthew N. [2 ,3 ,4 ]
Wyrwa, Katarzyna [1 ]
Naganowska, Barbara [1 ]
Wolko, Bogdan [1 ]
机构
[1] Polish Acad Sci, Inst Plant Genet, Strzeszynska 34, PL-60479 Poznan, Poland
[2] Royal Bot Gardens Kew, Nat Capital & Plant Hlth, Wakehurst Pl, Ardingly RH17 6TN, W Sussex, England
[3] Univ Western Australia, Sch Plant Biol, 35 Stirling Highway, Crawley, WA 6009, Australia
[4] Univ Western Australia, UWA Inst Agr, 35 Stirling Highway, Crawley, WA 6009, Australia
来源
BMC GENOMICS | 2016年 / 17卷
关键词
Lupinus angustifolius; Genomics; DNA sequencing; Flowering locus T; Phosphatidylethanolamine binding protein; Synteny; Duplication; BAC-FISH; CIS-REGULATORY ELEMENTS; CHROMOSOME BAC LIBRARY; PEBP GENE FAMILY; GENOME SEQUENCE; ANCESTRAL POLYPLOIDY; ARABIDOPSIS-THALIANA; DOMESTICATION GENES; NATURAL VARIATION; EVOLUTION; SOFTWARE;
D O I
10.1186/s12864-016-3150-z
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: The Arabidopsis FLOWERING LOCUS T (FT) gene, a member of the phosphatidylethanolamine binding protein (PEBP) family, is a major controller of flowering in response to photoperiod, vernalization and light quality. In legumes, FT evolved into three, functionally diversified clades, FTa, FTb and FTc. A milestone achievement in narrow-leafed lupin (Lupinus angustifolius L.) domestication was the loss of vernalization responsiveness at the Ku locus. Recently, one of two existing L. angustifolius homologs of FTc, LanFTc1, was revealed to be the gene underlying Ku. It is the first recorded involvement of an FTc homologue in vernalization. The evolutionary basis of this phenomenon in lupin has not yet been deciphered. Results: Bacterial artificial chromosome (BAC) clones carrying LanFTc1 and LanFTc2 genes were localized in different mitotic chromosomes and constituted sequence-specific landmarks for linkage groups NLL-10 and NLL-17. BAC-derived superscaffolds containing LanFTc genes revealed clear microsyntenic patterns to genome sequences of nine legume species. Superscaffold-1 carrying LanFTc1 aligned to regions encoding one or more FT-like genes whereas superscaffold-2 mapped to a region lacking such a homolog. Comparative mapping of the L. angustifolius genome assembly anchored to linkage map localized superscaffold-1 in the middle of a 15 cM conserved, collinear region. In contrast, superscaffold-2 was found at the edge of a 20 cM syntenic block containing highly disrupted collinearity at the LanFTc2 locus. 118 PEBP-family full-length homologs were identified in 10 legume genomes. Bayesian phylogenetic inference provided novel evidence supporting the hypothesis that whole-genome and tandem duplications contributed to expansion of PEBP-family genes in legumes. Duplicated genes were subjected to strong purifying selection. Promoter analysis of FT genes revealed no statistically significant sequence similarity between duplicated copies; only RE-alpha and CCAAT-box motifs were found at conserved positions and orientations. Conclusions: Numerous lineage-specific duplications occurred during the evolution of legume PEBP-family genes. Whole-genome duplications resulted in the origin of subclades FTa, FTb and FTc and in the multiplication of FTa and FTb copy number. LanFTc1 is located in the region conserved among all main lineages of Papilionoideae. LanFTc1 is a direct descendant of ancestral FTc, whereas LanFTc2 appeared by subsequent duplication.
引用
收藏
页数:21
相关论文
共 2 条
  • [1] Expansion of the phosphatidylethanolamine binding protein family in legumes: a case study of Lupinus angustifolius L. FLOWERING LOCUS T homologs, LanFTc1 and LanFTc2
    Michał Książkiewicz
    Sandra Rychel
    Matthew N. Nelson
    Katarzyna Wyrwa
    Barbara Naganowska
    Bogdan Wolko
    BMC Genomics, 17
  • [2] INDEL variation in the regulatory region of the major flowering time gene LanFTc1 is associated with vernalization response and flowering time in narrow-leafed lupin (Lupinus angustifolius L.)
    Taylor, Candy M.
    Kamphuis, Lars G.
    Zhang, Weilu
    Garg, Gagan
    Berger, Jens D.
    Mousavi-Derazmahalleh, Mahsa
    Bayer, Philipp E.
    Edwards, David
    Singh, Karam B.
    Cowling, Wallace A.
    Nelson, Matthew N.
    PLANT CELL AND ENVIRONMENT, 2019, 42 (01) : 174 - 187