A test for a parametric form of the volatility in second-order diffusion models

被引:3
|
作者
Yan, Tianshun [1 ]
Mei, Changlin [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Math & Stat, Dept Stat, Xian, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Second-order diffusion models; Generalized likelihood ratio test; Local-linear fitting; Bootstrap; OF-FIT TESTS; STOCHASTIC DIFFERENTIAL-EQUATIONS; COEFFICIENT REGRESSION-MODELS; TERM STRUCTURE; TIME-SERIES; SPECIFICATION;
D O I
10.1007/s00180-016-0685-z
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Second-order diffusion models have been found to be promising in analyzing financial market data. Based on nonparametric fitting, Nicolau (Stat Probabil Lett 78(16):2700-2704, 2008) suggested that the quadratic function may be an appropriate specification of the volatility when a second-order diffusion model is used to analyze some European and American financial market data sets, which motivates us to develop a formal statistical test for this finding. To achieve the task, a generalized likelihood ratio test is proposed in this paper and a residual-based bootstrap is suggested to compute the p value of the test. The analysis of many real-world financial market data sets demonstrates that the quadratic specification of the volatility function is in general reasonable.
引用
收藏
页码:1583 / 1596
页数:14
相关论文
共 50 条
  • [11] On second-order optimality of the observed Fisher information
    Lindsay, BG
    Li, B
    ANNALS OF STATISTICS, 1997, 25 (05): : 2172 - 2199
  • [12] A nonparametric specification test for the volatility functions of diffusion processes
    Chen, Qiang
    Hu, Meidi
    Song, Xiaojun
    ECONOMETRIC REVIEWS, 2019, 38 (05) : 557 - 576
  • [13] A goodness-of-fit test for parametric and semi-parametric models in multiresponse regression
    Chen, Song Xi
    Van Keilegom, Ingrid
    BERNOULLI, 2009, 15 (04) : 955 - 976
  • [14] Estimation for a Second-Order Jump Diffusion Model from Discrete Observations: Application to Stock Market Returns
    Yan, Tianshun
    Zhao, Yanyong
    Luo, Shuanghua
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2018, 2018
  • [15] A new test for the parametric form of the variance function in non-parametric regression
    Dette, Holger
    Neurneyer, Natalie
    Van Keilegorn, Ingrid
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2007, 69 : 903 - 917
  • [16] Second-order correctness of the blockwise bootstrap for stationary observations
    Gotze, F
    Kunsch, HR
    ANNALS OF STATISTICS, 1996, 24 (05): : 1914 - 1933
  • [17] Stationary subspace analysis based on second-order statistics
    Flumian, Lea
    Matilainen, Markus
    Nordhausen, Klaus
    Taskinen, Sara
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 436
  • [18] A second-order Stratonovich differential equation with boundary conditions
    Alabert, A
    Nualart, D
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1997, 68 (01) : 21 - 47
  • [19] An Affine Equivariant Robust Second-Order BSS Method
    Ilmonen, Pauliina
    Nordhausen, Klaus
    Oja, Hannu
    Theis, Fabian
    LATENT VARIABLE ANALYSIS AND SIGNAL SEPARATION, LVA/ICA 2015, 2015, 9237 : 328 - 335
  • [20] Second-order structure function in fully developed turbulence
    Huang, Y. X.
    Schmitt, F. G.
    Lu, Z. M.
    Fougairolles, P.
    Gagne, Y.
    Liu, Y. L.
    PHYSICAL REVIEW E, 2010, 82 (02)