Topological mappings of finite area distortion

被引:6
作者
Afanas'eva, Elena [1 ]
Golberg, Anatoly [2 ]
机构
[1] NAS Ukraine, Inst Appl Math & Mech, 1 Dobrovolskogo St, UA-84100 Slavyansk, Ukraine
[2] Holon Inst Technol, Dept Math, 52 Golomb St,POB 305, IL-5810201 Holon, Israel
关键词
Riemannian manifolds; Mappings of finite area distortion; Finitely bi-Lipschitz homeomorphisms; Quasisymmetry; Quasiconformality; Quasimobius mappings; Q-homeomorphisms; Moduli of families of curves and surfaces; Boundary behavior of FAD-homeomorphisms; Sobolev classes; Absolute continuity; MAPS; CONTINUITY; SPACES;
D O I
10.1007/s13324-022-00666-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the interplay of mappings of finite area distortion (FAD) with finitely bi-Lipschitz mappings, ring and lower Q-homeomorphisms, and absolutely continuous homeomorphisms of the class AC(Lambda)(n,p) on Riemannian manifolds. Some additional relations to the hyper Q-homeomorphisms, eta-quasisymmetric and omega-quasimobius mappings are also established. As applications of the above results, we provide several extension conditions to the weakly flat and strongly accessible boundaries under FAD-homeomorphisms.
引用
收藏
页数:29
相关论文
共 50 条
[21]   Lifted Bijections for Low Distortion Surface Mappings [J].
Aigerman, Noam ;
Poranne, Roi ;
Lipman, Yaron .
ACM TRANSACTIONS ON GRAPHICS, 2014, 33 (04)
[22]   Distortion theorems for convex mappings on homogeneous balls [J].
Chu, C. -H. ;
Hamada, H. ;
Honda, T. ;
Kohr, G. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 369 (02) :437-442
[23]   A New Characterization of the Mappings of Bounded Length Distortion [J].
Hajlasz, Piotr ;
Malekzadeh, Soheil .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (24) :13238-13244
[24]   Mappings with bounded (P, Q)-distortion on Carnot groups [J].
Ukhlov, A. ;
Vodop'yanov, S. K. .
BULLETIN DES SCIENCES MATHEMATIQUES, 2010, 134 (06) :605-634
[25]   DIMENSION DISTORTION OF IMAGES OF SETS UNDER SOBOLEV MAPPINGS [J].
Hencl, Stanislav ;
Honzik, Petr .
ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2015, 40 (01) :427-442
[26]   Injective and Bounded Distortion Mappings in 3D [J].
Aigerman, Noam ;
Lipman, Yaron .
ACM TRANSACTIONS ON GRAPHICS, 2013, 32 (04)
[27]   Existence of Fixed Points of Mappings on General Topological Spaces [J].
Shah, Masood H. ;
Hussain, Nawab ;
Ciric, Ljubomir .
FILOMAT, 2014, 28 (06) :1237-1246
[28]   Orlicz-Sobolev regularity of mappings with subexponentially integrable distortion [J].
Clop, Albert ;
Koskela, Pekka .
RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2009, 20 (04) :301-326
[29]   Sharp distortion theorems for a subclass of close-to-convex mappings [J].
Xu, Qinghua ;
Liu, Taishun ;
Liu, Xiaosong .
FRONTIERS OF MATHEMATICS IN CHINA, 2013, 8 (06) :1425-1436
[30]   On Distortion Estimates of Mappings with the Poletsky Condition in Domains with Poincare Inequality [J].
Dovhopiatyi, Oleksandr ;
Sevost'yanov, Evgeny .
NEW TOOLS IN MATHEMATICAL ANALYSIS AND APPLICATIONS, ISAAC CONGRESS 2023, 2025, :133-143