Airborne lidar LEANDRE II for water-vapor profiling in the troposphere. I. System description

被引:88
作者
Bruneau, D [1 ]
Quaglia, P [1 ]
Flamant, C [1 ]
Meissonnier, M [1 ]
Pelon, J [1 ]
机构
[1] Univ Paris 06, CNRS, Serv Aeron, F-75252 Paris 05, France
关键词
D O I
10.1364/AO.40.003450
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The airborne differential absorption lidar LEANDRE II, developed for profiling tropospheric water-vapor mixing ratios, is described. The emitter is a flash-lamp-pumped alexandrite laser, which operates in a double-pulse, dual-wavelength mode in the 727-736 nm spectral domain. Two 50-mJ successive on-line and off-line pulses with an output linewidth of 2.4 X 10(-2) cm(-1) and a spectral purity larger than 99.99% are emitted at a 50-mus time interval. The spectral positioning is controlled in real time by a wavemeter with an absolute accuracy of 5 X 10(-3) cm(-1). The receiver is a 30-cm aperture telescope with a 3.5-mrad field of view and a l-nm filter bandwidth. These instrument characteristics are defined for measuring the water-vapor mixing ratio with an accuracy better than 0.5 g kg(-1) in the first 5 km of the atmosphere with a range resolution of 300 m, integration on 100 shots, and an instrumental systematic error of less than 2%. The sensitivity study and first results are presented in part II [Appl. Opt. 40, 3462-3475 (2001)].. (C) 2001 Optical Society of America.
引用
收藏
页码:3450 / 3461
页数:12
相关论文
共 50 条
[31]   System design and performance simulation of ground-based differential absorption lidar for water-vapor measurements [J].
Ge Ye ;
Shu Rong ;
Hu Yi-Hua ;
Liu Hao .
ACTA PHYSICA SINICA, 2014, 63 (20)
[32]   Eye-Safe Diode-Laser-Based Micropulse Differential Absorption Lidar (DIAL) for Water Vapor Profiling in the Lower Troposphere [J].
Nehrir, Amin R. ;
Repasky, Kevin S. ;
Carlsten, John L. .
JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2011, 28 (02) :131-147
[33]   The airborne multi-wavelength water vapor differential absorption lidar WALES: system design and performance [J].
Wirth, M. ;
Fix, A. ;
Mahnke, P. ;
Schwarzer, H. ;
Schrandt, F. ;
Ehret, G. .
APPLIED PHYSICS B-LASERS AND OPTICS, 2009, 96 (01) :201-213
[34]   The airborne multi-wavelength water vapor differential absorption lidar WALES: system design and performance [J].
M. Wirth ;
A. Fix ;
P. Mahnke ;
H. Schwarzer ;
F. Schrandt ;
G. Ehret .
Applied Physics B, 2009, 96
[35]   An Attempt to Retrieve Continuous Water Vapor Profiles in Marine Lower Troposphere Using Shipboard Raman/Mie Lidar System [J].
Katsumata, Masaki ;
Taniguchi, Kyoko ;
Nishizawa, Tomoaki .
SOLA, 2020, 16A :6-11
[36]   WATER-VAPOR PROFILING OVER OCEAN SURFACE FROM AIRBORNE 90 AND 183 GHZ RADIOMETRIC MEASUREMENTS UNDER CLEAR AND CLOUDY CONDITIONS [J].
WANG, JR ;
BONCYK, WC ;
SHARMA, AK .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1993, 31 (04) :853-859
[37]   Ground-based differential absorption lidar for water-vapor and temperature profiling: development and specifications of a high-performance laser transmitter [J].
Wulfmeyer, V .
APPLIED OPTICS, 1998, 37 (18) :3804-3824
[38]   REMOTE LIDAR SENSING OF WATER-VAPOR IN THE STRATOSPHERE AND TROPOSPHERE USING H2O ABSORPTION-LINES IN THE 3 MU-M REGION [J].
ZUEV, VV ;
ROMANOVSKII, OA .
SOVIET JOURNAL OF REMOTE SENSING, 1990, 6 (05) :697-711
[39]   Progress towards an Autonomous Field Deployable Diode-Laser-Based Differential Absorption Lidar (DIAL) for Profiling Water Vapor in the Lower Troposphere [J].
Repasky, Kevin S. ;
Moen, Drew ;
Spuler, Scott ;
Nehrir, Amin R. ;
Carlsten, John L. .
REMOTE SENSING, 2013, 5 (12) :6241-6259
[40]   Temperature dependences of mechanisms responsible for the water-vapor continuum absorption. I. Far wings of allowed lines [J].
Ma, Q. ;
Tipping, R. H. ;
Leforestier, C. .
JOURNAL OF CHEMICAL PHYSICS, 2008, 128 (12)