Reversible, reagentless solubility changes in phosphatidylcholine-stabilized gold nanoparticles

被引:17
作者
Mackiewicz, Marilyn R. [1 ]
Ayres, Benjamin R. [1 ]
Reed, Scott M. [1 ]
机构
[1] Portland State Univ, Dept Chem, Portland, OR 97207 USA
关键词
D O I
10.1088/0957-4484/19/11/115607
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Phosphatidylcholine (PC) is a versatile ligand for synthesizing gold nanoparticles that are soluble in either organic or aqueous media. Here we report a novel route to organic-soluble, PC-stabilized gold nanoparticles that can be re-suspended in water after removal of the organic solvent. Similarly, we show that PC-stabilized gold nanoparticles synthesized in water can be re-suspended in organic solvents after complete removal of water. Without complete removal of the solvent, the nanoparticles retain their original solubility and do not phase transfer. This change in solvent preference from organic to aqueous and vice versa without the use of an additional phase transfer reagent is novel, visually striking, and of utility for synthetic modification of nanoparticles. This approach allows chemical reactions to be performed on nanoparticles in organic solvents followed by conversion of the products to water-soluble materials. A narrow distribution of PC-stabilized gold nanoparticles was obtained after phase transfer to water as characterized by UV-visible (UV-vis) spectroscopy and transmission electron microscopy (TEM), demonstrating that the narrow distribution obtained from the organic synthesis is retained after transfer to water. This method produces water-soluble nanoparticles with a narrower dispersity than is possible with direct aqueous synthesis.
引用
收藏
页数:6
相关论文
共 65 条
[1]   Optical absorption spectra of nanocrystal gold molecules [J].
Alvarez, MM ;
Khoury, JT ;
Schaaff, TG ;
Shafigullin, MN ;
Vezmar, I ;
Whetten, RL .
JOURNAL OF PHYSICAL CHEMISTRY B, 1997, 101 (19) :3706-3712
[2]   Growth of gold nanoparticles in human cells [J].
Anshup ;
Venkataraman, JS ;
Subramaniam, C ;
Kumar, RR ;
Priya, S ;
Kumar, TRS ;
Omkumar, RV ;
John, A ;
Pradeep, T .
LANGMUIR, 2005, 21 (25) :11562-11567
[3]   Strongly interacting plasmon nanoparticle pairs: From dipole-dipole interaction to conductively coupled regime [J].
Atay, T ;
Song, JH ;
Nurmikko, AV .
NANO LETTERS, 2004, 4 (09) :1627-1631
[4]   Synthesis and characterization of novel cationic lipid and cholesterol-coated gold nanoparticles and their interactions with dipalmitoylphosphatidylcholine membranes [J].
Bhattacharya, S ;
Srivastava, A .
LANGMUIR, 2003, 19 (10) :4439-4447
[5]   Formation and electron diffraction studies of ordered 2-D and 3-D superlattices of amine-stabilized gold nanocrystals [J].
Brown, LO ;
Hutchison, JE .
JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (37) :8911-8916
[6]   Semiconductor nanocrystals as fluorescent biological labels [J].
Bruchez, M ;
Moronne, M ;
Gin, P ;
Weiss, S ;
Alivisatos, AP .
SCIENCE, 1998, 281 (5385) :2013-2016
[7]   SYNTHESIS OF THIOL-DERIVATIZED GOLD NANOPARTICLES IN A 2-PHASE LIQUID-LIQUID SYSTEM [J].
BRUST, M ;
WALKER, M ;
BETHELL, D ;
SCHIFFRIN, DJ ;
WHYMAN, R .
JOURNAL OF THE CHEMICAL SOCIETY-CHEMICAL COMMUNICATIONS, 1994, (07) :801-802
[8]   SYNTHESIS AND REACTIONS OF FUNCTIONALIZED GOLD NANOPARTICLES [J].
BRUST, M ;
FINK, J ;
BETHELL, D ;
SCHIFFRIN, DJ ;
KIELY, C .
JOURNAL OF THE CHEMICAL SOCIETY-CHEMICAL COMMUNICATIONS, 1995, (16) :1655-1656
[9]   Physicochemical investigation of surfactant-coated gold nanoparticles synthesized in the confined space of dry reversed micelles [J].
Calandra, P. ;
Giordano, C. ;
Longo, A. ;
Liveri, V. Turco .
MATERIALS CHEMISTRY AND PHYSICS, 2006, 98 (2-3) :494-499
[10]   Quantum dot bioconjugates for ultrasensitive nonisotopic detection [J].
Chan, WCW ;
Nie, SM .
SCIENCE, 1998, 281 (5385) :2016-2018