Statistical properties for an open oval billiard: An investigation of the escaping basins

被引:11
作者
Hansen, Matheus [1 ]
da Costa, Diogo Ricardo [2 ]
Caldas, Ibere L. [1 ]
Leonel, Edson D. [2 ]
机构
[1] Univ Sao Paulo, Inst Fis, Rua Matao,Travessa R 187,Cidade Univ, BR-05314970 Sao Paulo, SP, Brazil
[2] Univ Estadual Paulista, UNESP, Dept Fis, Av 24A,1515 Bela Vista, BR-13506900 Rio Claro, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Classical billiards; Escape of particles; Fractal boundaries; FRACTAL STRUCTURES; BOUNDARIES; PARTICLES; DYNAMICS;
D O I
10.1016/j.chaos.2017.11.036
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Statistical properties for recurrent and non recurrent escaping particles in an oval billiard with holes in the boundary are investigated. We determine where to place the holes and where to launch particles in order to maximize or minimize the escape measurement. Initially, we introduce a fixed hole in the billiard boundary, injecting particles through the hole and analyzing the survival probability of the particles inside of the billiard. We show there are preferential regions to observe the escape of particles. Next, with two holes in the boundary, we obtain the escape basins of the particles and show the influence of the stickiness and the small chains of islands along the phase space in the escape of particles. Finally, we discuss the relation between the escape basins boundary, the uncertainty about the boundary points, the fractal dimension of them and the so called Wada property that appears when three holes are introduced in the boundary. (c) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:355 / 362
页数:8
相关论文
共 33 条
[1]   Fractal structures in nonlinear dynamics [J].
Aguirre, Jacobo ;
Viana, Ricardo L. ;
Sanjuan, Miguel A. F. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :333-386
[2]  
Alliggod KT, 2012, CHAOS INTRO DYNAMICA
[3]   Poincare recurrences and transient chaos in systems with leaks [J].
Altmann, Eduardo G. ;
Tel, Tamas .
PHYSICAL REVIEW E, 2009, 79 (01)
[4]  
Berry M. V., 1981, European Journal of Physics, V2, P91, DOI 10.1088/0143-0807/2/2/006
[5]  
Bird J.P., 1992, J PHYS CONDENS MATT, V11, pR413
[6]  
Birkhoff G., 1927, Dynamical Systems
[7]  
Bunimovich L A., 1974, Funktsional. Anal. i Prilozhen, V8, P73
[8]   STATISTICAL PROPERTIES OF LORENTZ GAS WITH PERIODIC CONFIGURATION OF SCATTERERS [J].
BUNIMOVICH, LA ;
SINAI, YG .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1981, 78 (04) :479-497
[9]  
Chernov N, 2006, CHAOTIC BILLIARDS
[10]   Escape patterns, magnetic footprints, and homoclinic tangles due to ergodic magnetic limiters [J].
da Silva, EC ;
Caldas, IL ;
Viana, RL ;
Sanjuán, MAF .
PHYSICS OF PLASMAS, 2002, 9 (12) :4917-4928