Global existence and decay properties of solutions for some degenerate quasilinear parabolic systems modelling chemotaxis

被引:12
作者
Sugiyama, Yoshie [1 ]
机构
[1] Tsuda Coll, Dept Math & Comp Sci, Kodaira, Tokyo 1878577, Japan
关键词
Global existence; Decay; Degenerate; Quasilinear; Chemotaxis;
D O I
10.1016/j.na.2005.03.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The following degenerate parabolic system modelling chemotaxis is considered. (KS)tau {u(t) = del center dot (del u(m) - u del v), x is an element of R-N, t > 0, tau v(t) = Delta v - v + u, x is an element of R-N, t > 0, u(x, 0) = u(0)(x), v(x, 0) = v(0)(x), x is an element of R-N, where tau = 0 or 1. We show here that the system of (KS)(tau) with m > 1 has a time global weak solution (u, v) with a uniform bound in time when (u(0), v(0)) is a nonnegative function and in L-1 boolean AND L-infinity (R-N) x L-1 boolean AND H-1 boolean AND W-1,W-infinity (R-N), u(0)(m) is an element of H-1 R-N). The decay properties of the solution with small initial data are also discussed. (C) 2005 Published by Elsevier Ltd.
引用
收藏
页码:E1051 / E1062
页数:12
相关论文
共 9 条
[1]  
Alikakos N. D., 1979, Comm. Partial Differential Equations, V4, P827, DOI DOI 10.1080/03605307908820113
[2]   Symmetrization techniques on unbounded domains:: Application to a chemotaxis system on RN [J].
Diaz, JI ;
Nagai, T ;
Rakotoson, JM .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1998, 145 (01) :156-183
[3]   Blowup of nonradial solutions to parabolic-elliptic systems modeling chemotaxis in two-dimensional domains [J].
Nagai, T .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2001, 6 (01) :37-55
[4]  
Nagai T., 1995, Adv. Math. Sci. Appl., V5, P581
[5]  
Nagai T., 1997, Funkcial. Ekvac., V40, P411
[6]  
Nagai T., 2000, J Korean Math Soc, V37, P721
[8]  
Oleinik OA., 1961, RUSS MATH SURV, V16, P105, DOI [DOI 10.1070/RM1961V016N05ABEH004114, 10.1070/RM1961v016n05ABEH004114]
[9]  
Sugiyama Y., 2004, TIME GLOBAL EXISTENC