Torsion pairs and filtrations in abelian categories with tilting objects

被引:2
作者
Lo, Jason [1 ]
机构
[1] Univ Illinois, Dept Math, Urbana, IL 61801 USA
关键词
Tilting object; torsion pair; derived equivalence; Fourier-Mukai transform; FOURIER-MUKAI TRANSFORMS; STABILITY CONDITIONS; SURFACES; MODULI; K3;
D O I
10.1142/S0219498815501212
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a noetherian abelian k-category Z of finite homological dimension, with a tilting object T of projective dimension 2, the abelian category Z and the abelian category of modules over End(T)(op) are related by a sequence of two tilts; we give an explicit description of the torsion pairs involved. We then use our techniques to obtain a simplified proof of a theorem of Jensen-Madsen-Su, that Z has a three-step filtration by extension-closed subcategories. Finally, we generalize Jensen-Madsen-Su's filtration to the case where T has any finite projective dimension.
引用
收藏
页数:16
相关论文
共 17 条
[1]   A functorial construction of moduli of sheaves [J].
Alvarez-Consul, Luis ;
King, Alastair .
INVENTIONES MATHEMATICAE, 2007, 168 (03) :613-666
[2]  
[Anonymous], 2006, Oxford Mathematical Monographs, DOI DOI 10.1093/ACPROF:OSO/9780199296866.001.0001
[3]  
Bayer A, 2014, J ALGEBRAIC GEOM, V23, P117
[4]  
Brenner S., 2007, LONDON MATH SOC LECT, V332
[5]   Fourier-Mukai transforms for K3 and elliptic fibrations [J].
Bridgeland, T ;
Maciocia, A .
JOURNAL OF ALGEBRAIC GEOMETRY, 2002, 11 (04) :629-657
[6]  
Bridgeland T, 1998, J REINE ANGEW MATH, V498, P115
[7]  
Bridgeland T., 1998, THESIS U EDINBURGH
[8]   Hilbert schemes of points on some K3 surfaces and Gieseker stable bundles [J].
Bruzzo, U ;
Maciocia, A .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1996, 120 :255-261
[9]   On the invariant theory for tame tilted algebras [J].
Chindris, Calin .
ALGEBRA & NUMBER THEORY, 2013, 7 (01) :193-214
[10]  
Craw A., 2008, PREPRINT